

SCHOOL OF COMPUTING AND INFORMATION MANAGEMENT

Masters of Science in Information Systems Management

A ROADMAP MODEL TOWARDS UNIFIED SOFTWARE REQUIREMENTS

ENGINEERING PROCESS MANAGEMENT: SYSTEM DYNAMICS APPROACH

PRESENTER: GITHINJI DAVID NJOROGE

REG. NO: 14/02104

This dissertation has been submitted is in partial fulfillment for the requirement of master of

Science degree, Information Systems Management (ISM) in the faculty of Computing and

Information Management of KCA University. Kenya.

OCTOBER 2018

Declaration

I hereby declare that this project report is my own work and in my knowledge have not been

previously published or submitted elsewhere to any other institution of higher learning for award of

a degree. I also declare that this research study contains no material written or published by other

people except where due reference is made and author acknowledged.

1. Student Name: GITHINJI DAVID NJOROGE

2. Reg. No. : 14/02104

Signature: …………………….. Date ………………………..

This dissertation submitted has been in partial fulfillment for the requirement of masters of Science

degree, Information Systems Management (ISM) in the faculty of Computing and Information

Management of KCA University, Kenya.

 I do hereby confirm that I have examined the master’s research project of GITHINJI DAVID

NJOROGE and I have certified that all revision recommendations addressed are adequate.

Supervisors

3. Dr Henry Mwangi

Signature …………………………Date………………

4. Rachael Kibuku

Signature …………………………Date………………

Dedication

I dedicate this project to my family; wife Miriam, children Eunice and Margaret who helped me

proofread the research paper and my mother for the prayers and encouragement. Thank you all for

making this research project a success.

ii

Acknowledgement

I acknowledge the Mighty Hand of God for His Grace that enabled me complete this course

successfully. I am greatly indebted to my supervisors Dr. Henry Mwangi and Rachael Kibuku for

their continuous guidance, evaluating, validating my model and supporting me in my research work.

I appreciate my family, college mates and the KCA family for the extended motivation and support

throughout my studies and research project. Thanks also go to my employer who allowed me

undertake this course. May the Almighty God, abundantly reward you always.

I pray that the knowledge and experience acquired in my Master’s degree journey helps further my

career and impact people’s lives.

Githinji David Njoroge
October 2018

iii

Abstract

The Success of software projects heavily and critically depends on the effectiveness of Requirements

Engineering (RE) and the Requirements Engineering Process Improvement (REPI). This research study

adopts and applies System Thinking/System Dynamics (SD) approach to the complex and dynamic REPI

process. The research paper presents a unified model for improving quality software and delivery. Review

of the state-the-art practice in RE and REPI literature indicates six categories of problem that motivated

the research work reported in this paper. Poor RE and REPI processes make projects to fall behind

schedule, encounter budget over-shoots and poor software specification and development. The research

study seeks to understand these problems from a feedback control point of view due to lack of

quantitative data and agreement on the nature of deficiencies in the current RE and REPI processes. The

model developed therefore not seen to be an answer to the existing RE and REPI problems, but as an aid

tool for research, researchers and RE stakeholders to advance a deeper understanding needed to answer

them. The study identifies several strategies for performing REPI research from empirical to paradigm

shift and isolates hot areas of research that address RE and REPI needs for effective software product

delivery. Development of the model contributes to research by providing foundation for theory building

on RE and RE improvement management of software projects in learning institutions, RE, REPI and

software stakeholders.

Key Words: Requirements, Requirement Engineering, Requirements Engineering Process

Improvement, “Software Crisis”, Software Quality, System Dynamics, Systems Development Life

Cycle, Quality Assurance

iv

TABLE OF CONTENTS
Declaration ... i

Dedication .. i

Acknowledgement ... ii

Abstract .. iii

TABLE OF CONTENTS .. iv

List of Figures .. viii

List of Acronyms and Abbreviations ... xi

List of Table .. xii

CHAPTER ONE: INTRODUCTION ... 1

1.2 Background Introduction .. 1

1.2 Problem Statement ... 2

1.3. Definition of Key Terms ... 3

1.4 Purpose of the Research Study ... 4

1.5 Research Objectives ... 4

1.6 .Dynamic Hypothesis ... 4

1.7 Casual Loop Diagrams (CLD) .. 4

1.7.1 Reinforcing Feedback Loops (R) ... 5

1.7.2 Balancing Feedback Loops (B) .. 6

1.7.3 Exponential Growth .. 6

1.7.4 Oscillation Behavior .. 6

1.7.5 Explanations for the Feedback Loops .. 7

1.8 Reference Mode ... 10

1.9 Motivation of the Research Study ... 11

1.9.1 REPI Expectations .. 11

1.9.2 The REPI Vision ... 11

1.9.3 The Software REPI Initiatives Action Plan .. 12

1.9.4 The Business Motivations to REPI .. 12

1.9.5 The Software Project Improvement (REPI) Guiding Principles .. 12

1.9.6 Planning the REPI Program ... 13

1.9.7 Monitoring the REPI Program ... 13

1.9.8 Scope of the Study .. 13

1.10 Justification of the Research Study ... 13

CHAPTER TWO: LITERATURE REVIEW ... 15

2.1 Introduction ... 15

2.2 Requirement Engineering (RE) ... 16

2.2.1 Building Blocks of RE ... 16

2.2.2 Classifications of Software Requirements .. 16

v

2.2.3 Requirements Engineering Improvement Process .. 17

2.2.4 The State-of-the Art REPI Research Process .. 18

2.2.5 Requirements Engineering Process Improvement (REPI) ... 19

2.2.6 Requirements Engineering Methods .. 20

2.2.7 Requirements Checking Process Techniques .. 21

2.2.8 Requirements Negotiation Techniques ... 22

2.2.9 Consequences of REPI Failure ... 22

2.2.10 Managing the RE Improvement Process .. 24

2.2.11 Requirements Process Analysis (RPA) ... 24

2.3 Software Crisis ... 25

2.3.1 REPI and The “Software Quality Crisis”.. 25

2.3.2 Causes of REPI and “Software Crisis” .. 26

2.3.3 Early Signs of Software Crisis ... 26

2.3.4 Software Crisis in Modern Time .. 28

2.3.5 REPI Alignment Challenges .. 29

2.4 REPI and Software Policy Analysis .. 29

2.5 REPI Conceptual Framework ... 30

2.8 Derived Reference Mode .. 30

2.9 Summary ... 31

CHAPTER THREE: RESEARCH METHODOLOGY ... 32

3.1 Introduction ... 32

3.2 Research Strategy ... 32

3.2.1 Research Objectives .. 32

3.2.1.1 Population .. 34

3.2.1.2 Interviews ... 34

3.2.1.3 Questionnaire ... 34

3.2.2 Research Design, Stock and Flow Diagrams (SFD) .. 34

3.2.3 Simulation ... 35

3.3 Research Design... 35

3.4 Research Strategy Stages .. 35

3.4.1 Problem Statement (Stage 1) .. 35

3.4.2 Field Studies (Stage 2) ... 35

3.4.3 Model Building (Stage 3) .. 36

3.4.4 Case Study (Stage 4) ... 36

3.4.5 Model Simulation Experiments (Stage 5) ... 36

3.4.6 Policy Analysis (Stage 6) ... 37

3.5 System Dynamic Development Methodology ... 37

3.5.1 Pre-Project .. 37

vi

3.5.2 Project Life-Cycle (PLC) ... 37

3.5.3 Post-Project ... 38

CHAPTER FOUR: THE MODEL AND RESULTS OF THE MODEL .. 39

4.1 Introduction ... 39

4.2 Model Variables ... 39

4.3 System Model Boundary .. 41

4.4 Time Scope .. 41

4.5 The System Model Structure for the USREPM System ... 41

4.5.1 User Interface: ... 42

4.5.2 System Stock and Flow Diagrams (USREPM System/Subsectors) ... 42

4.5.2.1 Software Project Management Sub-System/Sector .. 42

4.5.2.2 Human Resource Management System/Sector .. 42

4.5.2.3 Manpower Allocation Sub-System/Sector ... 43

4.5.2.4 Development & Productivity Sub-System/Sector .. 43

4.5.2.5 Quality Assurance & Re-Work Sub-System/Sector ... 43

4.5.2.6 System Testing Sub-System/Sector ... 44

4.5.2.7 Controlling Sub-System/Sector ... 44

4.4 System Model Stock & Flows Diagram Relationships .. 44

4.5 Causal Loop Diagrams (CLD) .. 45

4.6 Model Simulation Graphs/Results .. 49

Re-Work Manpower Effort .. 50

Error Rework Rate ... 50

Error Detection and Error Detection Rates .. 50

Quality Assurance Subsystem & Rework /Sub-Sector .. 51

Productivity, Rework Rate and Work Force Needed ... 52

Effects of Productivity, Re-Work Rate and Work Force Absorbed .. 52

Effects of Experience and Learning on Staff Overall Productivity... 52

Effects of Communication on Staff Allocations .. 53

Manpower Per Average Error against Efficiency .. 53

Software Bugs Fixing ... 54

Staff Motivation and Exhaustion .. 54

Effects of Workforce Exhaustion on Software Development Projects ... 55

Determination of Project Staff Levels in Software Projects ... 55

Effects of Turn-Over on Projects .. 56

CHAPTER FIVE: DISCUSSION OF RESULTS ... 57

5.1 Introduction ... 57

5.2 Software Errors and Rework Process .. 58

5.3 Re-Work Manpower Effort... 58

vii

5.4 Software Error Rework Rate... 60

5.5 Error Detection and Rework Detection Rate ... 60

5.6 Error Generation and Error Generation Rate ... 61

5.7 Software Error Densities .. 62

5.8 Workforce Productivity, Rework Rate and Workforce Needed ... 62

5.9 Effects of Staff Experience & Learning on the Overall Productivity.. 63

5.10 Effects of Communication on Staff Allocations and Production .. 63

5.11 Software Bug fixing. .. 64

5.12 Staff Motivation ... 64

5.13 Effects of Workforce Exhaustion on Software Development ... 65

5.14 Effects of Staff Experience on Productivity .. 65

5.15 Determining of Project Staff Levels .. 65

5.16 Effects of Turn-Over/Quit-Rate & Schedule on Projects ... 66

5.17 Product Quality Assurance, Continuous Testing and Error Rework ... 66

5.18 Cost of Errors in Projects .. 67

5.2 Software Project Sub-systems and Sub-sectors ... 67

a) Planning Sub-System ... 67

b) Controlling Sub-System ... 68

c) Software Production Sub-System ... 72

d) Manpower Allocation Subsystem/Subsector ... 73

e) Software Development Productivity Sub-Sector ... 75

f) The System Testing Sub-system ... 81

5.3 Field Discussion Groups Research Findings .. 83

5.3.1 Validity and Reliability Statistics ... 83

5.4 Conclusion .. 86

5.5 Models Sub-Sectors and Associated Formulas and Calculations ... 87

CHAPTER SIX: CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK .. 93

6 Introduction .. 93

6.1 Achievements of the Research Study .. 94

6.2 Limitations of the Research Study .. 95

6.3 Future Research ... 95

6.4 Advantages of Using the USREPM Model .. 97

References: .. 98

Appendix 1: Research Questionnaire.. 106

Appendix 3: Research Budget .. 109

Appendix 2: Implementation Schedule ... 110

Appendix 4: Implementation Schedule ... 111

viii

List of Figures

Figure 1.1: Cause- Effect Relationship Diagram ... 5

Figure: 1.2: Positive and Negative Polarity Link ... 5

Figure 1.3: Exponential Growth Polarity Link .. 6

Figure 1.4: Oscillation Behavior... 7

Figure 1.5: Dynamic Hypothesis .. 7

Figure 1.6: Effects of Staff Learning & Experience on Productivity ... 10

Figure 1.7: Effects of Schedule Pressure on Staff Productivity ... 11

Figure 2.1: Unified Software RE Process Management Conceptual Model (USREPM) 30

Figure 2.2: Derived Reference Mode ... 31

Figure: 3.1: Research Strategy Design ... 32

Figure 3.2: Dynamic Synthesis Methodology .. 37

Figure 4.1: The USREPM System Model Structure .. 41

Figure 4.2: Software Project Management System/Sector .. 42

Figure 4.3: Human Resource Management System/Sector ... 42

Figure 4.4: Manpower Allocation Sector ... 43

Figure 4.5: Software Development & Productivity Sub-System/Sector ... 43

Figure 4.6: Quality Assurance & Re-Work System/ Sector ... 43

Figure 4.7: System Testing System/Sub-Sector ... 44

Figure 4.8: Controlling Sub-System Sector ... 44

Figure 4.9: USREPM System SFD/Relationship Diagram ... 44

Figure 4.10: System Testing Causal Loop Diagram .. 45

Figure 4.11: Human Resource Management Causal Loop Diagram .. 45

Figure 4.12: Planning Sub-System Causal Loops .. 45

Figure 4.13: Controlling Sub-System Causal Loops Diagram ... 46

Figure 4.14: Software Development Productivity Sub-Sector Causal Loops 46

Figure 4.15: Software Production Sub-Systems Causal Loop Diagram ... 46

ix

Figure 4.16: Quality Assurance & Re-Work Sub-Sector ... 47

Figure 4.17: Enhancement of Effort for Re-Work Process. .. 47

Figure: 4.18: Error Detection and Re-Work Detection Rate ... 48

Figure 4.19: Effects of Error Generation Rate (CLD) .. 48

Figure 4.20: Effects of Error Densities on Re-Work, QA and Staff Allocation (CLD) 48

Figure 4.21: Manpower Allocation Sub-System/Sub-Sector (CLD). ... 49

Figure 4.22: Human Resource Management Causal Loops Diagram... 49

Figure 4.23: Effects of Error Re-work Processes on Software Quality ... 49

Figure 4.24: Effects of Rework Manpower Effort on Software Quality ... 50

Figure 4.25: Effects of Error Re-Work Rate on the REPI Process ... 50

Figure 4.26: Effects of Error Detection and Detection Rate on REPI and Software Quality 50

Figure 4.27: Effects of Error Detection Rate on Software Quality Assurance 51

Figure 4.28: Effects of Error Generation Rate on Workforce Level .. 51

Figure 4.29: Effects of Error Densities on Re-Work and QA Staff Allocation 51

Figure 4.30: Productivity, Rework Rate and Workforce Needed ... 52

Figure 4.31: Effects of Productivity, Re-Work Rate and Workforce Absorbed. 52

Figure 4.32: Effects of Experience & Learning on Staff Productivity ... 52

Figure 4.33: Effects of Communication and Project Briefing on Staff Allocations 53

Figure 4.34: Manpower per Average Error against Efficiency .. 53

Figure 4.35: Effect of Early Error Detection and Fixing (Goal Seeking) of Software Quality 54

Figure 4.36: Effects of Over-Work and Staff Motivation on staff Productivity (S-Shaped) 51

Figure 4.37: Effects of Workforce Exhaustion on Software Development 55

Figure 4.38: Effects of Staff Experience on Software Process ... 55

Figure 4.39: Decisions to Determine Project Work-Force Level .. 55

Figure 4.40: Effects New Hire, Staff Assimilation and Turnover on Workforce Productivity 56

Figure 4.41: Cost of Errors on Software Projects .. 56

Figure 5.1: Number of Errors as a Major Cause of Software Failure ... 85

x

Figure 5.2: Effects of Staff Productivity on REPI and Software Product ... 85

Figure 5.3: Poor Error-Rework Cause Software Failure .. 86

Figure 5.4: Effects of Poor Communication and Schedule Pressure on Software Product Quality 86

xi

List of Acronyms and Abbreviations

CLD Causal Loop Diagram

ESD Traditional Exploratory Systems Dynamics

EMA Exploratory Modeling and Analysis

ESSU European Service Strategy Unit

ESDMA Exploratory Systems Dynamics Modeling and Analysis

FDG Field Discussion Groups

KTDA Kenya Tea Development Agency

I.T Information Technology

ICT Information Communication Technology

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

REPI Requirements Engineering Process Improvement

PLC Product Life Cycle

PLCM Product Life Cycle Management

QA Quality Assurance

SD Systems Dynamics

SFD Stock and Flow Diagram

RE Requirement Engineering

REMP Requirements Engineering Management Process

R & D Research and Development

SDLC System Development Life Cycle

SE Software Engineering

SI Systems Information

UK United Kingdom

USA United States of America

PM Portfolio Management

xii

List of Table

Table 2.1: Requirements Types .. 16-17

Table 2.2: Elicitation Techniques in Practice .. 20-21

Table 2.3: Requirements Checking Techniques .. 21-22

Table 2.4: Requirements Negotiation Techniques ... 22

Table 2.5: Modern Resolution on Time, on Budget with a Satisfactory Results 23

Table 2.6: Resolution of the Software Projects by size ... 23

Table 2.7: System Analysis Techniques .. 24-25

Table 2.8: Traditional Project Management Techniques and Tools ... 26-27

Table 3.1: REPI Model Key Base Variables, Definition and Source……………………………. 36

Table 4.1: The Base Model Endogenous, Exogenous and the Excluded Processes 40

Table 4.2: Endogenous, Exogenous and Excluded Processes in the Enhanced Base-Model 41

Table 5.1: Case Processing Summary ... 84

Table 5.2: Field Study Item Summary Statistics ... 84

Table 5.3: Scale Statistics ... 84

Table 5.4: Validity & Reliability Statistics ... 84

1

CHAPTER ONE: INTRODUCTION

1.2 Background Introduction

 This chapter outlines the background of the study and discusses characteristics of “software crisis”

outlining general and specific objectives and the motivations behind the study. The chapter states and

outlines the scope, boundary, justification, benefits and beneficiaries of the study. This chapter debates

major causes of low software quality, high production costs, budgetary and schedule overruns, delivery

delays, examines early and modern times software crisis as a continuing phenomenon. (Zawedde,

A.S.A. et al., 2013), (Kamuni, S.K., 2015) (Putnam-Majarian, T. & D. Putman, 2015) and (Barbara

Gladysz, et al. , 2015)

According to Barbara Gladysz, et al. (2015) poor RE improvement process causes poor software quality,

projects run over-budget and over-time, making software projects unmanageable and difficult to

maintain. Uncoordinated project planning, schedule estimations and change management, low

productivity and failed policies historically continue to be major difficulties associated with software

quality. (Morrison, B.J., 2012), (Kartik Rai, Lokesh Madan & Kislay Anand, 2014) and (Putnam-

Majarian, T. & D. Putman, 2015)

RE improvement involves activities in software development process namely: requirements gathering,

analysis, validation of software properties and components delivered to customers that have varied

satisfaction based on expected product quality. Traditional REPI approaches are impractical today due

to the complexity of system development. REPI is an incremental and interactive process not performed

in parallel with other software development activities such as design, implementation, testing as well as

requirements documentation. (Parviainen, et al., 2003), (Jalote, 1997), (Pandley & Ramani, 2009),

(Mijwaart, 2012), (Annet Reilly, 2011) and (Yaniv & Dov Dori, 2017)

Understanding and aligning REPI reduces risks of unsatisfactory software when stakeholders are

involved in building and aligning it to the organization’s goals and successful utilization. REPI must

focus itself to software quality strategy than on a quality plan. (Hassenzahl, Beu & Burmesster, 2001),

(Gorschek & Wohlin, 2006), (Glinz, & Fricker, 2013) and (Annet Reilly, 2016)

2

1.2 Problem Statement

According to Sterman , (2000), Beecham et al., (2005), Somerville & Ransom, (2005), Mohapatra, S. &

Gupta, K., (2011), Annet Reilly, (2014), and Zawedde, et al. (2016), poor RE improvement process

(REPI) is a universal problem in software development. The authors continue to indicate that the

problem is rooted in failing REPI methods such as Bespoke to capture the dynamics of the process and

existing variables interrelationship. The proposed method deals with the steadiness of these problems.

According to Gorschek, T., & Davis, A. M., (2007), D.W. ,Williams, (2000), Zawedde, A., & Williams,

D. , (2013, 2014) & Philip Morris International, (2015), the problem can best be dealt with by exploring

existing methodologies such as the agent based modelling (ABM), system thinking (SD), group

dynamics, group model building (GMB), structured equation modeling (SEM), dynamic synthesis

methodology (DSM) and analytical modeling (AM). Most existing methods such as Petri Nets, Monte

Carlo, Complex theory, decision theory and the Bayesian Belief Network follow a static, probabilistic

and mathematical approach considered hierarchical and difficult to model complex systems. They all

fail to capture the entire dynamics and greatly address short-term fixes. (Gorschek, T., & Davis, A.M.,

2007), (Zawedde, A., & Williams, D., 2013, 2014) and (Philip Morris International 2015)

According to Gorschek T., & Davis, A. M., (2007), (Glinz, & Fricker, (2013) and Zawedde, A., (2016),

REPI variations exists due to diversities between variables, lack of timely and accurate information,

communication delays and excessive error rework.

3

1.3. Definition of Key Terms

Requirements: Expressions of needs and constraints placed on a software to solutions of some real-

world problem. (Juristo, Moreno, & Silva, 2002) and (Michael, M. et al., 2017)

System Development Life Cycle (SDLC): A description of system development stages from the initial

feasibility study to delivered software maintenance. (Kroenke, 2015)

Requirement Engineering (RE): A set of objectives concerned with requirement identification and

contexts in which the system runs. (Juristo, Moreno, & Silva, 2002)

Requirement Engineering Process Improvement (REPI): A systematic software process aimed at

controlling changes in the requirements process, improvements for requirements specifications at

reduced costs and product delivery. (Zawedde, A.S.A. et al., 2011)

Domain: Definition of common requirements, terminologies and functionality for a product with a

purpose of solving problems in areas of software development. (Bjorner, D. 2006)

Software Engineering (SE): An engineering discipline that spells aspects of software production for a

specific customer or market. (Kotonya & Somerville, 2006) and (Glinz, M., & Fricker, S., 2013)

System Dynamics (SD): Modeling and simulation of complex system dynamic behavior over time to

generate useful imminent results through deduction, understanding and explaining the behavior of

interrelated processes. (Williams, D., 2003a, 2003b), (Harris & William, 2005), (Pruyt, E., 2010) and

(Michael, M. et al., 2017).

Quality Assurance (QA): Planned and systematic pattern of action required for the provision of

adequate confidence in a product conformity and establishment of technical requirements. The degree to

which software satisfies stated and implied needs of the stakeholders and provide value. (Philip Morris

International, 2015). (ISO/IEC 25023: 2016) and (ISO 12207: 2017)

Software Crisis: Difficulties of writing useful and efficient programs in a timely manner due to quality,

rapid increase in computing power and problems complexity in a dynamic world. (Putnam-Majarian, T.

& Putman, D., 2015)

4

1.4 Purpose of the Research Study

The research study undertakes a holistic and dynamic systems approach to the RE process improvement

(REPI) and focuses on the dynamic feedbacks within the software project processes. The approach

offers a more rigorous way for describing, exploring and analyzing complex software projects to expose

areas of weakness in the RE improvement process.

1.5 Research Objectives

The main research objective is to develop a model towards an RE improvement process (REPI), analyze,

and simulate factors influencing the process. This will help organizations, stakeholders and researchers

make sound decisions for a complete RE improvement process.

The study seeks to:

(i) Identify dynamics that affect the RE improvement process.

(ii) Define factors that distract the effectiveness of the RE improvement process.

(iii) Design an SD model incorporating key variables that comprise of the RE improvement process.

(iv) Implement a systems dynamic model using the Stella modelling tool.

(v) Test and validate the systems as a tool for analyzing the RE improvement process.

1.6 .Dynamic Hypothesis

Based on thorough research based investigations, the dynamic hypothesis (DH) statement can be proved

either true or false. According to Sterman, (2010) the DH is a working theory of how the problem arose

as indicated by Olivia, (2003) “It is a theory about how structure and decision policies generate the

observed behavior”. According to Ranganath & Rodrigues, (2008), the dynamic hypothesis in SD

represented may be in a statement, causal loop diagram (CLD) or stocks and flow diagram (SFD). In this

research study, the DH based was on CLD. The dynamic hypothesis draws out and tests consequences

of feedback loops. The SD model is built on the understanding of the feedback loops and the DH of the

RE improvement process shown below. (Sterman, 2010, p.95) and (Ranganath & Rodrigues, 2008, p.7)

1.7 Casual Loop Diagrams (CLD)

According to Sterman, (2000), D.W., William, (2000) and Zawedde, et al., (2016), causal loops show a

systematic behavior and exhibit the most suitable way to capture the system processes is to understand

5

its feedback mechanisms. Causal loops consist of systems process variables linked by arrows that show

causal influence among various process variables. Causal loops give a mind-map causal-effect-

relationship between system variables. Variables are linked with arrows of two possible polarity states

either positive (+) or negative (-) as shown below. (Mohapatra, S. & Gupta, K., 2011)

Figure 1.1: Cause and Effect Relationship Diagram

Variable-linking arrows begin with the “cause variable” and head to the “effect variable”. When the

positive polarity link exists, increase (Decrease) in variable A, respectively causes an increase

(Decrease) on variable B. The two variables move in opposite directions resulting to either positive (+)

or negative (-) causal link. (Zawedde, A., 2016)

Positive and Negative Causal Links

 Figure 1.2 Positive and Negative Polarity Link

In a positive causal link, increase (Decrease) in variable A, leads to an increase (Decrease) on variable

B. An increase (Decrease) in variable A causes an increase (Decrease) on variable B. The system

responds in a specific manner because of changeable or constant influences on it and represents

systematic feedback loops of events on its variables on processes that may lead to cause and effect chain

of events. Reinforcing (R) and balancing (B) link feedback loops cause system behavior. (Sterman,

2000), (Sterman, C.D., 2003) and (Zawedde, A.S.A. et al., 2011)

1.7.1 Reinforcing Feedback Loops (R)

According to Pruyt E., (2010), reinforcing loops (R)/ (Positive Feedback) (+) results when a causal

element A, results to positive (+) influence on variable B. The implications are; increase (+) of variable

A responds to B value with a positive (+) increase. (Richardson, 1986), (Zawedde, A.S.A. et al., 2016)

and (Michael Mutingi, et al., 2017)

6

1.7.2 Balancing Feedback Loops (B)

A balancing loop (B)/(Negative Feedback) (-) influence indicates that a causal variable A, has a negative

influence (-) on variable B while at the same time an increase (+) of variable A leads to a decrease (-) of

variable B respectively. The system decomposes series of linkages and feedback loops in interlinked

frames. Causal loop diagrams enable demonstration of system behavior. (Richardson, 1986), (D.W.

William, 2000), (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

1.7.3 Exponential Growth

System exponential growth behavior is because of system’s positive and self-reinforcing feedbacks.

According to Richardson, (1998), efforts to demonstrate the exponential growth in a system clearly

vindicate that a change in one systems variable causes a positive change in another variable within the

system. This is clearly equally demonstrated in our system that a positive increase in RE staff

productivity may lead to a more stable normal monthly productivity. This clearly demonstrates that an

exponential growth in the net RE productivity may be achieved. (Putnam-Majarian, T. & Putman, D.,

2015) and (Zawedde, A.S.A. et al. , 2011)

Figure 1.3 Exponential Growth Polarity Link

According to Sterman, (2010), Williams, D., (2003a, 2003b), Zawedde, A. & Williams, D., (2013, 2014)

and Zawedde, A., (2016), the goal seeking behavior normally results from a negative self-balancing loop

where the system state demonstrates a comparison against the desired system state goals. As a result, a

corrective action is undertaken resulting to discrepancies that appear in the system. The corrective

action’s desire is to try to bring the system back towards the desired state.

1.7.4 Oscillation Behavior

A system’s oscillation behavior takes place in event of a delay that happens in the negative feedback

mechanism as demonstrated in the figure below. The goal seeking behavior of a system is similar to an

oscillating system behavior. However, the later presents a delay in the system process. Demonstrated in

the figure below are negative feedback loops seeking to drive the system towards the goal desired.

However, instantly the goal never be reached. Therefore, a delay is obvious though the two feedback

7

mechanisms tend to drive the system in the same direction. In an attempt to move the system towards

this goal direction, sometimes this results to system “goal “overshoots. Similarly, the negative loop

seeks to bring the system state towards the goal but due to the role delay play in correcting the

discrepancies, undershooting to do so occurs. (Sterman, 2010), (Williams D., 2003a, 2003b), (Zawedde,

A. & Williams, D., 2013, 2014), (Zawedde, A.S.A. et al. , 2011) and (Zawedde, A., 2016)

Figure 1.4: Oscillation Behavior

The corrective actions may be achieved by moves aimed at achieving the full potential RE productivity

through training reducing the number of unrestrained requirement engineers who undertake the project

towards completion time. The demand for new further training compares well with the fraction of work

currently completed over the project time-schedule versus the existing RE’s productivity at the current

time. This results to a need to hire new staff to meet the project schedule. (S.C. Davar, & M., Parti,

2013) and (Zawedde, A., 2016)

1.7.5 Explanations for the Feedback Loops

Resorces/Budget (R.S)

Customer/User Requirements (C.R)

Software Quality Assurance (QA)
RE/Engineers Experience (EXP.RE) RE

Productivity
(R.P)

Project Schedule/Duration (P.S)

+

+

- -

+

+

- +

+

+

+

+

-

+

-
-

-

-

-

+
-

B9

R5

B8

R4
B7

B5

B4
B6

R2

R3 R1

B2

B1

B3
B10

Figure 1.5: Dynamic Hypothesis

8

The figure above shows the key variables that broadly contribute to software crisis and form the basis of

the REPI model. Balancing (B1-B9) and reinforcing loops (R1-R5) influence RE improvement process.

Improved model loops, interacting and interrelated variables discussion are in chapter five in models

sub-systems and sub-sectors. These extra variables also impede the RE improvement process. (Williams

D., 2003a, 2003b) and (Zawedde, A. & Williams, D., 2013, 2014)

Balancing Loops : (B1 to B9)

Dynamic Hypothesis Balancing Loop (B1): Increase in user requirements reduces workforce

productivity and increases unresolved requirements over time. (Sabaliuskatie, G., et al., 2010)

Dynamic Hypothesis Balancing Loop (B2): Increase in requirements reduces the workforce

productivity, increases project schedule and resource demands causing a budget creep. Failure to further

fund RE improvement process increases unresolved need. (Van Oorchot, K. Langerak, F. & Ngupta,

K.S., 2011)

Dynamic Hypothesis Balancing Loop (B3): Efforts to resolve requirements lead to improved

workforce experience to work and rework on the software, greatly reducing the number of unresolved

system errors. (S.C., Davar & M. Patri, 2013)

Dynamic Hypothesis Balancing Loop (B4): Poor workforce productivity leads to increased error

rework. When errors increase, over already existing ones, more time is required to correct the errors as

well as work on the initial user requirements, which increase project time. More resources are required

to meet the gap. When more resources availed are not in time, unresolved requirements increase leading

to further decrease in productivity. (Putnam-Majarian, T., & Putman, D., 2015)

Dynamic Hypothesis Balancing Loop (B5): Poor RE productivity leads to increased project time and

demoralized staff since achieving the project schedule cannot be, hence further decreasing productivity.

(Zawedde, A., 2016)

Dynamic Hypothesis Balancing Loop (B6): Increased project duration leads to reduced software

quality and a surge in project duration. (Yaniv Mordecai & Dov Dori, 2017)

Dynamic Hypothesis Balancing Loop (B7): Increasing project duration under a constrained budget

invites budget creep and late software delivery. To fit the project within a constrained budget, quality is

9

compromised leading to increase of unresolved user requirements, leaving firms with no alternative but

to seek for more funds/resources to fund the project leading to a budget runoff. (Morisson, B.J., 2012)

Dynamic Hypothesis Balancing Loop (B8): Failure to achieve software quality wastes resources,

which renders the software unusable and the project terminated. If the company resolves to continue

using the poorly engineered software, users are demoralized and feel unsatisfied. (Philip Morris

International, 2015)

Dynamic Hypothesis Balancing Loop (B9): With constrained project resources and budget, software

product requirements are unattainable, leading to resource wastage and frustrated customers. (Morisson,

B.J., 2012)

Dynamic Hypothesis Balancing Loop (B10): An increase in the number of unresolved errors leads to

decreased workforce productivity, elongated project time and delayed software delivery. (Kamuni, S.K.,

2015)

Reinforcing Loops: (R1 to R5)

Dynamic Hypothesis Reinforcing Loop (R1): Increase in REs productivity improves software quality,

workforce experience and further improves staff performance and efficiency. (S.C., Davar & M. Parti,

2013)

Dynamic Hypothesis Reinforcing Loop (R2): When the perceived workforce productivity achieved is

not through improved performance and efficiency, delivered software fails to meet the desired quality

standard, leading to increased incomplete requirements, constrained staff, further leading to decrease in

the actual staff productivity. (Kabaale, E. Manyoka, K.G., & Mbarika, I., 2014)

Dynamic Hypothesis Reinforcing Loop (R3): Improved staff experience improves actual productivity

and efficiency to handle all user requirements. When there is achieved productivity and efficiency,

customers are satisfied with REPI and the organization gets their Returns on Investment (ROI).

Experienced staff easily resolve errors to meet the desired product standard. Quality software qualifies

contracted firms more contracts, leading to increased demand for software products by other firms. This

demand increases the demand for REs and availability of experienced staff that reduces the cost to train

and induct newly hired staff. (Gloria, P. et al., 2014) and (Damian, D. & Chisan, J., 2006)

10

Dynamic Hypothesis Reinforcing Loop (R4): Increased software delivery time leads to loss of

resources, constrained budget, extended project duration and poor software quality. (Cuellar M., 2011)

Dynamic Hypothesis Reinforcing Loop (R5): An increase in the number of unresolved software errors

and those awaiting rework increases user requirements, demanding resource and budgetary boost. With

unreachable budget, the compromised software fails to perform well in production thus customers and

stakeholders remain disappointed. The client also fails to perform the desired daily duties, leading to

poor work performance. (D.W., Williams, 2000), (Gloria, P., et al., 2014) and (Daneva, M., 2016)

1.8 Reference Mode

According to K. Saced, (1999) and Ranganath & Rodrigues, (2008), p.8.), reference mode (RM)

represents system characteristics and behavior rather than its trend. It depicts a far different picture from

historical data and qualitative descriptions. Saaed, (2008) argues that RM is a graph pattern that

represents the different actual system variable’s behavior over time that clarifies the modeler’s problem

and the client in a pictorial format. Reference mode is a fabric that explains the complex pattern rather

than a collection of historical time series. These behaviors form the guiding principles for the system-

dynamics modeling process. Reference mode demonstrates system variable’s behavior over time graph

(BOT), reference behavior or reference conditions. (Khan & McLucas, 2008, p. 24), (Majiwaart, R.,

2012) and (Zawedde, A., 2016)

Figure 1.6: Effects of Staff Learning & Experience on Productivity.

11

Figure 1.7: Effects of Schedule Pressure on Staff Productivity

1.9 Motivation of the Research Study

Standard bodies such as ISO provide motivation for organizations to initiate the processes of improving

a particular process to comply with the global standards. Organizations are compelled to build and

comply with the standards. International standards therefore provide a starting point to build the REPI

program.

Management and other stakeholders must understand “Why”, “What” and “How” to undertake the

process improvement initiative to support vision and strategic goals. All cases must determine how well

the perceived REPI effort supports the organization’s business objectives. Understanding the underlying

motivation helps understand the benefits, determine the key performance indicators (KPI’s) and

probability of success. The performance indicators help gauge the extent of effort (s) required to initiate

the process improvement and what it takes to keep the process going. (Philip, A., Laplate, 2017)

1.9.1 REPI Expectations

To achieve a successful RE improvement process, cooperation between all levels of management,

practitioners and stakeholders is paramount to understand “What” expected is of them, the cost

implications, senior management roles and benefits of committing to the REPI program. (Williams, D.,

2003a, 2003b) and (Zawedde, A. & Williams, D., 2013, 2014)

1.9.2 The REPI Vision

If REPI initiatives fail to support the management’s vision, their support to the process remains very low

and slow and projects may fail to setoff or take long period to implement. (Williams, D., 2003a, 2003b)

and (Tricentis, 2018)

12

1.9.3 The Software REPI Initiatives Action Plan

For effective RE & REPI development, the improvement process initiative, actions and implementation

plans must be in place. The action plan requires senior management to present the business “Vision” and

goals, clearly stating how the effort supports them. Stakeholders must get an overview of the

requirements engineering improvement initiatives in an action plan template. The reviewed major action

plan via working group focus areas forms an action plan schedule. (Williams, D., 2003a, 2003b) and

(Zawedde, A. & Williams, D. 2013, 2014)

1.9.4 The Business Motivations to REPI

According to D.W., Williams, (2000), listed below are the motivations of business to the Requirements

Engineering Improvement Process:

a) Software product quality improvements

b) Cycle time reduction

c) Improved schedule performance

d) Reduced internal rework and wasted

rework effort

e) Reduced staff turnover and increased

morale

f) Reduced cost of product production

g) Increased customer satisfaction

1.9.5 The Software Project Improvement (REPI) Guiding Principles

According to Williams, D.W, (2000), below are the guiding principles for software requirements

engineering improvement process and initiatives:

1 To address business, technical, project management and software quality that has the highest

R.O.I value, management must explain to stakeholders why the proposed REPI activities and

deliverables are important to them and the business.

2 The software product must be concise, usable and must add value.

3 The REPI initiatives and efforts focus on influencing examples and use of appropriate existing

artifacts.

4 Project team, organization, staff and customers (internal and external) must understand the

change process.

5 The REPI initiative emphasize on the importance of complying with the domain environment,

policies, statutory and international standard procedures.

13

1.9.6 Planning the REPI Program

The development of strategic REPI activities and action plans entails reviewing the findings and

recommendations from field discussion groups (FDG) from base lining activities. The FDG’s inputs

provide the reference point for REPI’s development strategic plan. Findings and recommendations

align to organization’s vision, mission, strategic plans and business requirements and determines

content, priority and sequence of plan activities. (Forester, J.W., 1991), (D.W. Williams, 2000)

(Williams, D., 2003a, 2003b), (Zawedde, A., & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

1.9.7 Monitoring the REPI Program

According to Williams, D.W., (2000), the evaluation of activities to monitor the REPI program

includes all features of the REPI program and the researcher asks questions such as:

 Right done are things?

 Done are the things rightly?

 Has expected benefits been achieved?

 Is the REPI project on schedule?

 Is the project costs within budget?

 Are you satisfied with the REPI and

software product quality?

The REPI program measurement and monitoring evaluates the system’s development and REPI’s

process progress status. The program selected metrics study, evaluates and defines the REPI status and

progress. (Williams, D.W, 2000)

1.9.8 Scope of the Study

The study focuses on RE improvement initiative processes from the inception, sending of requirement

specifications to customers for approval and the time of finished software product delivery to the client.

Exploration and analysis of the existing dynamic relationships between variables and their influence on

the REPI process, determine its success through FDGs and establish how best to derive maximum value

from it. (Gorschek, T., & Davis, A. M., 2007) and (Mijwaart, 2012)

1.10 Justification of the Research Study

Successful REPI process implementation bridges existing software quality gaps. The SD approach

assumes a high-level approach to REPI provides a test and perhaps delivers a clear and more realistic

possible ways to resolve software problems. The approach considers diverse subjective factors

extensively ignored by the traditional operational models this study considers static, short-range and not

14

all-inclusive in their assumptions. While traditional, static, probabilistic, mathematical and SD

approaches provide project estimation focus, cost and schedule from a REPI’s eye, the later tool adopts

a more dynamic and strategic view to the REPI initiatives. (William D., 2003a, 2003b), (Zawedde,

A.S.A. et al., 2011), (Zawedde, A. & Williams, D., 2013) and (Yaniv Mordecai & Dov Dori, 2017)

15

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

According to Liuguo, S., Shijing, Z. & Jianbai, H., 2012) establishment of successful RE improvement

remains a difficult technical and organizational problem. This chapter addresses the REPI research

question by forming a discussion of existing process improvement methods and their relationships to the

problem addressed in this study. Strengths and weaknesses of existing RE and REPI approaches contain

literature review in context of “software crisis”. The conceptual REPI model framework debate in

reference to established relationships between literature reviews and predictions of the RE improvement

process.

This part of the paper forms a solid theoretical foundation for research, as established in Abdel Hamid’s

original model, its scientific foundation in SD and establishment of traditional REPI process research

publications. Literature reviews offer solid foundations of REPI in system dynamics approach (SDA),

dynamics synthesis methodology (DSM) and establishes a strong foundation on the traditional and

current school thinking on Total Quality Management (TQM). SD approach understands the complex

system behavior over time (BOT) using causal loop, stock and flow diagrams, table functions and time

delays. (Abdel-Hamid, 1991)

This chapter establishes the importance of feedback mechanisms in software REPI process. RE forms

the initial fundamental building blocks that combine RE improvement processes in system product life

cycle and remain the root cause of persistent software errors and failures from integration and system

testing. (Michael, M. et al., 2017) and (IEEE, 2017)

When requirements are erroneous, the system ends up released out of schedule, costs more, customers

remain dissatisfied and may end up using the faulty software or decide to scrap it altogether. The

delivered system ends up being unreliable in use, containing regular systems errors and crush and

distracting normal business operations. If the client’s choice is to continue using the system, the cost of

maintaining and evolving faulty software are high. (Abdel-Hamid & Madnick, 1991), (Zawedde, A.S.A.

et al. (2011), (Zawedde, A. & Williams, D., 2013, 2014) and (Kamuni, S.K., 2015)

16

The research study aims to elucidate, simulate and discuss results of poor RE improvement processes

that introduce project cost overruns, schedule pressure and poor software quality standards. (Philip

Morris International, 2015)

2.2 Requirement Engineering (RE)

2.2.1 Building Blocks of RE

Software product performance is a descriptive definition. According to Graham, (1991), (Gloria, P. et

al., (2014), and (Michael, M. et al., (2017) software performance is categorized in two broad ways; the

condition or capability needed by a user to solve a problem or achieve an objective. Secondly, as a

condition or capability that achieved or possessed must be by the software or its components to satisfy a

contract’s standard, specification or other formerly imposed documents.

Requirements not only include the user’s needs, but also those arising from general and varied

stakeholders, organizational, governmental and industrial standards. Requirements depend on design;

explaining “What” the system must do rather than “How” it does it. This, according to Davis, (1999)

and Michael, M., et al., (2017) may not be practically possible in real industrial implementations

because of varied user and stakeholders viewpoints.

2.2.2 Classifications of Software Requirements

Requirements are classified in various ways. Though difficult, Berry, D. M., Czarneeki, K., Antkiewiez,

M., & Abdelrazik, M., (2010) clearly distinguish the different types in practice. For example, though

security is classified a non-functional requirement in practice or in the implementation phase, other

requirements emerge, which are distinguishably functional e.g. authorizations which fall well under

security needs. Functional requirements define what a system does while the non-functional ones define

constraints that meet functional needs.

 The table below outlines and describes various requirement types. (Chung L.,Yu E., Mylopoulos, J. &

Nixon, B., 2000), (Kotonya & Somerville I., 2006) and (IEEE, 2014), pp. 1-138)

Table 2.1: Requirements Types [Adapted from Chung L.,Yu E., Mylopoulos J., & Nixon B., (2000)]

Type Description Author (s)

 Behavior Systems sequence state, artifacts or class

response to event triggers.

-Whittele and Schumann, (2000)

- Kniberg & Skarin, (2010)

Formal Automated tools used to test for -Kobayashi & Maekawa, (2001)

17

Property correctness, stability and totality. - Bernard, Bidoit et al., (2010)

Functional
System reaction to inputs or specified

actions.

- Lam, McDermid & Vickers, (1997) p.

102-113

Interface
Connects a system to the environment,

users, and/or other software.

-Maiden, Gizinkis & Robertson, (2004),

p. 68-75

- Martin and Meinik, (2008), p.68-75

Process
Actions and operations undertaken and

applied to fulfill the desired goal.
-McGrath, (2001)

Quality

(Non-

functional)

Software features: performance,

reliability, security, compatibility

stability, portability, robustness, usability

and maintainability.

- Melao & Pidd, (2000), p.105-129

- ISO/IEC, (2010)

System

Structure

Hardware, software, memory and storage

requirements.

Glossary
Abbreviations, acronyms, synonyms and

homonyms.

- Chung, Nixon, et al. (2000),

- Pohl and Rupp, (2011)

Scenario
How users interact with the system to

achieve the desired goal (s).

- Miilne & Maiden, (2012), p. 83-98

- Alexander and Maiden , (2005)

Stakeholders

Actors or denoted agents: users, groups or

organizations that gain or lose something

with the software.

- Van Lamsweerde, (2001)

- Alexander & Robertson, (2004),

p.23-27

- Arlow and Neustadt, (2005)

Structure
Systems entities, attributes and their

relationships.

- Arlow and Neustadt (2005)

- Glinz, Seybold, et al. (2007)

2.2.3 Requirements Engineering Improvement Process

Many firms significantly consider schedule performance and time to market as key distinguishing

factors between market leaders and followers. A contest between schedule commitment and shortening

life-cycle time until product release assures the perception as a reliable supplier, as well as the overall

profit optimization.

Demands to hasten project handover and product commercialization have improved execution of

research and development during the past years. However, today the world continues facing

instrumentation challenges of cross-functional coordination that result to prolonged cycle-time and

overall project delays.

18

Software requirements improvement and contracts have in many times been committed without proper

alignments, coordination, project management and marketing to boost short-term revenues. These

misalignments lead to insufficient capacity planning, poor software development and resource allocation

and delayed projects, which lead to ultimately failed REPI.

Successful projects clearly identify user needs and market domain translating them into a product vision

executed, following predefined scope and sound management principles. Clearly identified and defined

RE improvement process remains the initial and major building block that brings and coordinates

different phases of the product life cycle (PLC).

 Eveleens, L. & Verhoef, C., (2010) research indicates that only half of the originally allocated software

requirements appear in the final release version, consequences of failed REPI. Elbert, C. & Dumke, R.,

(2012) argued that the effects of the REPI activities require to be defined, developed, implemented and

phased-out in a software and its related variants or releases.

 Successful RE improvement processes and product management must outline rules governing software

development from its inception to market and generate high ROI. Lastly, REPI guides products and

desired solutions from inception through refinement, to delivery of the desired ROI to stakeholders and

finally the Portfolio Management (PM). (Zawedde, et al., 2016)

2.2.4 The State-of-the Art REPI Research Process

The motive behind RE and REPI activities, is to explore the strengths and weaknesses in software

product development. The study samples a survey of the state-of-the-Art RE and REPI research, with

assessment of existing models, frameworks and technologies. The section presents a brief collection of

reports and surveys to address the effects of the RE improvement process.

According to Kabaale, E., Mayoka, K.G., & Mbarika, I., (2014), the aim of REPI is to introduce

engineering principles into practice rather than traditional REPI methods analysis. The RE and REPI

must remain a systematic and strictly disciplined process that follow structured repeatable process

activities. (Leite, 1987). The ability to identify problems and give suggestions to improve the RE and

REPI processes opens a major potential to increase the software project’s success rate. Research must

capture software gaps through continuous software projects examinations to improve the current RE and

REPI processes.

19

This research study efforts to understand and model current REPI processes for continuous improvement

with hope to raise the software projects success rate. According to Madhavji et al., (1994), and

Zawedde, A. & Williams, D. (2013) many existing descriptive REPI models in literature provide a clear

description of common RE activities and their sequence. However, Nguyen & Swatmann, (2000) and

Houdek & Pohl, (2000) say these models are different, bear conflicting nature and range from linear and

incremental to cyclical and iterative in structure. REPI models in practice differ from commonly

accepted REPI process models in literature. Further, Macaulay, (1996), Katonya, (2006) and Michael

Mutingi, et al., (2017) saw existing RE & REPI models as rather situation independent and influenced

by customer-supplier relationships, product, industry, technical maturity, multidisciplinary involvement

and the organizations culture.

2.2.5 Requirements Engineering Process Improvement (REPI)

Requirement engineering improvement and planning processes control the relationship between process

documents and those produced during the RE and REPI processes. According to Stevens R., Brook, P.,

Jackson, K. & Arnold, S., (1998), RE and REPI processes begin with requirements management,

activities identification and ends with change control after requirement development. During the REPI

process, activities which continuously nature the RE development process are already over and

completed during the product maintenance phase. (Glinz, M., & Fricker, S., 2013)

REPI provides a systematic approach to change control; the focus is to add value to quality requirement

specifications at a reduced cost and delivery time within a specified schedule. This implies existing

challenges in software alignment form, requirements engineering context and subsequent realignment

that can best be located at the RE/ REPI stage (s) of the SDLC. (Solomon, B, Shahibuddin, S., & Ghai,

A., 2009) and (Zawedde, A.S.A., et al., 2011)

According to Williams, D., (2003) and Cooper, et al., (2009), RE and REPI activities are dynamic and

complex processes that require changes. The REPI must dynamically managed be while preserving

relationships existing between variable and identifying existing inconsistencies among RE/REPI

activities, devising corrective actions. Therefore the RE and REPI processes remain the main causes of

software project failures.

20

2.2.6 Requirements Engineering Methods

There has been a long tradition of research and practice in RE and REPI. According to Cheng, B, &

Atlee, J., (2007), p.10) and Pruyt, E., (2010), early influential research work described the RE and REPI

process as an inquiry where requirements engineers’ questions about software performance from

stakeholders and develops product specifications. Traditional Exploratory Systems Dynamics (ESD),

Exploratory Modelling and Analysis (EMA), Exploratory Systems Dynamics Modelling and Analysis

(ESDMA) were fast to build, relatively small, simplified, quantitative approach (Quantitative

Uncertainty Analysis Approach) and easy to use SD for quick exploration of possible conceivable

scenarios

 Pruyt, E., (2010) and Lin, & Mathieu, R., (2003) details REs requirements elicitation and expectations

from stakeholders, model and analysis of model inputs on the proposed software in consultation with

system developers while still seeking stakeholders’ implementations acceptance. Chung, L., Yu, E. &

Nixon, B. 2000)

Danevas, P., (2012), p.15-16) argued that if the RE improvement process (REPI) is well undertaken on a

shared understanding, requirements stabilize and stakeholders are satisfied. Requirement elicitation

process enables the REs understand the project vision: REPI and its underlying constraints and context

of its deployment. (Conradi, 1998)

The table below outlines elicitation techniques applied in requirement elicitation processes to exposes

users/stakeholder’s views points, external systems interactions, respective backgrounds, interests and

expected outcomes.

 Table 2.2: Elicitation Techniques in Practice. [Adapted from (Danevas, P. (2012), pp.15-16)]

Technique Description Author

Archaeology Systems analysis to understand their

functionality, quality and usage.

-Perez-Casstillo-Gorcifa-Rodriguez de

Gunzman, et al. ,(2011) p. 1023-1044

- Davis & Zowghi , (2006), pp. 1-3

Creativity Create and generate innovative ideas to

solve difficult problems.

- Davis & Zowghi , (2006), p. 1-3

- Denger, Berry, et al. (2003

Data

Mining

Knowledge gathering method and filtering

database requirements as customer needs.

- Dieste, Juristo, et al. (2008), p. 11-13

- Cleland-Huang & Mobasher, (2008)

Interview Res and stakeholders discussion meeting on - Alvarez & Urla, (2002), p. 38-52

21

system requirements. - Dwarakanath, A., (2013)

Observation Study users to understand system usage,

processes, strengths and weaknesses.

- El Emam & Madhavji (1985)

- Bayer & Holtzblatt (1995) p. 45-52

Introspection Use of domain knowledge in combination

with reflection and empathy to base

requirements on experience.

- Easterbrook, Lutz, et al. (1998),

p. 1-11

- Velmersch, (2009), pp. 20-57

- Bjorner, D., (2006).

Reuse Use of existing specifications to avoid

reinvention of adequate requirements.

- Lam, McDermid, et al., (1997), p. 102-

113

Workshops Shared meeting between REs &

stakeholders to set an agreement between

workshop participants.

- Fricker, Glinz, (2010)

- Gottesdiener, (2002)

Survey

Questionnaire

Paper/electronic questions distributed to

stakeholders for their opinions/overview.

- Ng, Barfield, et al. ,(1995), p. 113-127

- Eveleens & Verhoef, (2010), p. 30-36

2.2.7 Requirements Checking Process Techniques
The requirement checking process permits REs to check the RE and REPI approach appropriateness to

fulfill the vision, stockholder’s software goals and acceptance. The process initiates new query cycles

for requirements required, standards or stakeholders that do not meet the set standards considered not

good enough. A requirements checklist outlines the stakeholder’s agreement with contents, project

scope and the SRS document and RE improvements.

The table below outlines some of the selected techniques applied during the requirements and RE

improvements process checking.

Table 2.3: Requirements Checking Techniques. [Adapted from (Danevas, P., 2012) pp.15-16)]

Technique Description Author

Automated

Checking

Formal system specification testing to detect

differing missing requirements.

-Perez-Castillo, Garcifa-

Rodriguez de Guzman & Piattini,

(2011), p. 1023-1044

Inspection Formal review of requirement specifications by

stakeholders. Effective at discovering existing

problems and understanding the specifications.

-Porter, Votta et al., (1995), pp.

563-575

-Petersen and Wohlin, (2010), pp.

975-996

Peer reviews Detailed REs feedback on review of quality

assurance of the specification work.

Prototype Use of models in the roles-play for user and system

22

review acceptance checking.

Simulations Model estimates and reviews of the system’s

behavior using an appropriate tool for correctness

check.

-Phaal, Farruk & Probert, (2003),

pp. 5-26

- Glinz , Seybold, et al. , (2007)

Walk-

through

Detailed and efficient review and discussion of the

requirements specification with stakeholders.

2.2.8 Requirements Negotiation Techniques

The techniques outlined below clearly lead to negotiations, dialogue and finally unclassified agreement

between stakeholders and system developers about software. They outline contractual agreement,

approved requirements specification as a guide to project management, RE improvement process and

software release strategy. (Fricker, 2009)

Table 2.4: Requirements Negotiation Techniques. [Adapted from, (Fricker, 2009)]

Technique Description Author (s)
Conflict

Management

Discovery and conflict resolving process among

stakeholders and software development team.

- Pohl and Rupp, (2011)
- Chung, Nixon et al. , (2000)

Handshaking Reviewing and discussing with stated and unstated

stakeholders, needs on implementation proposals to

align planned software product implementation.

-Fricker, Gorsechek, et al.,
(2010), p.72-80
-Potts, Takahashi and Anton,
(1994), p. 21-32

Negotiation

Analysis

Analysis of possible dialogs and outcomes, setting-

out fair agreement with a value-creating eye.

-Raiffa, (2007)

Power

Analysis

Analysis of the power, influence of stakeholders and

their interaction plan.

-Rea and Parker (2005),
-Milne and Maiden, (2012), p.
83-98

Prioritizing Ranking requirements to obtain order on their

implementation plan by the project team.

-Achimugu, Selamat et al.
,(2014),
-Holm (1979), p. 65-70

Strategy

Alignment

Aligning requirements with business strategy

through explicit trace-ability

-Alexander and Robertson
(2004), p.23-27
- Gorscheck and Wohlin (2006)

Variant

Analysis

Analysis and selection of alternative features as a

way of solving problems.

-Retting (1994), p. 21-27
-Schobbens, Heymans et al.
(2007) ,p. 456-479

Win-win

negotiation

Structured tool-supported approach of identifying

options for agreement and selection of the most

appropriate option.

-Ross (1977), p. 16-34
-Boehm, Grunbacher et al.,
(2001) p. 46-55

2.2.9 Consequences of REPI Failure
According to Zawedde, A. & Williams, D., (2013) and Zawedde, A.S.A., et al., (2011), research work,

software requirement specifications and effective REPI process stand as the base of effective software

23

functionality and critical determinants of software quality. Stated below, literature reviews show

requirement errors are frequent in the software-life-cycle. They stand as the most expensive and time

consuming to rectify.

According to Eveleens, L., & Verhoef, C., (2010) and (Hastie, S., (2015), Standish CHAOS report of

2015 shows a study of 50,000 projects around the world ranging from tiny enhancements to massive

systems RE implementations. The studies indicate pending work and research challenges to achieve

successful software projects. The reported summary shows projects research study outcomes from 2011

to 2015 using the new definition of success factors. (Hastie, S., 2015)

Table 2.5: Modern Resolution (on time, budget with a satisfactory result). [Adapted from Hastie, S.

(2015)]

 2011 2012 2013 2014 2015
SUCCESSFUL 29% 27% 31% 28% 29%
CHALLENGED 49% 56% 50% 55% 52%
FAILED 22% 17% 19% 17% 19%

In the same report, a research study conducted on showed how small projects had higher likelihood

success than larger ones. High project failure was also evidently high.

Table 2.6: Resolution of the Software Projects by size. [Adapted from Hastie, S., (2015)],

Standish CHAOS Report of 2015

 Successful Challenged Failed
Grand 2% 7% 17%
Large 6% 17% 24%
Medium 9% 26% 31%
Moderate 21% 32% 17%
Small 62% 16% 11%
Total 100% 100% 100%

The above tables document a sad reality of “software depression”. In most cases, the cost of RE

improvements process relates to problems dramatically increasing in software development process. The

reports show RE improvement process has a significant impact on the overall success of software

projects.

According to Hastie, S. (2015), though highlighted study samples date back many years, the rate

probably remains the same. Literature suggests that success depends on “multiple dimensions” other

than only those in the research study. Joosten, Basten & Mellis, (2011) argue that dimensions in the

24

research study best represent and give the most appropriate approach towards definition of software

projects success.

2.2.10 Managing the RE Improvement Process

The RE and REPI are all life cycle activities related to gathering, documenting and managing needs. The

common requirements activities entail elicitation, interpretation and structuring (analysis and

documentation), negotiation, verification and validation, change management as well as requirements

traceability. (Koboyashi, A. & M. Maekawa, 2001)

2.2.11 Requirements Process Analysis (RPA)

Requirements engineering improvement process (REPI) outlines selected system analysis techniques.

Described in the table below, RE process analysis techniques seek to understand and identify

requirements in depth. The RPA process distinguishes current systems features, proposed new features

and introduces them into a product while taking into account those that are not required. According to

Fricker, S., 2008), the process seek to understand how requirements are bound to be implemented in a

software, considerations in the development plan, as well their application to system testing. (Glinz, M.,

2010) & (Fricker, S., 2012)

Table 2.7: System Analysis Techniques. [Adapted from Fricker, Rainer & Zwingli, (2015)]

 Technique Description Author

Domain

Driven

Development

Specification of relevant system concepts in

context, to be implemented - those that must

be implemented and respected by the

system.

- Glinz, (2010)

- Denevas and Garva , (2012)

-Bjorner, D., (2006).

Formal

Specifications

Mathematical and formal logical

expressions that enable automated

completeness, consistency and correctness

checking.

- Holtmann, Meyer et al, (2011)

- Glinz and Fricker , (2013)

Informal

Modeling

Sketching a system model to reflect and

discuss how system variables interrelate.

- Glinz , (2010)

- Glinz & Fricker, (2014)

SD Modeling SD modeling and tools that demonstrate system

variables interrelationship and system BOT.

- Glinz, Seybold & Meier, (2007)

- Gorsecheck, Fricker & Palm, (2010)

OOA

Method

Use object-oriented language (UML) to specify

the structure, functionality and system behavior.

- Arlow and Neustadt, (2005)

- Glinz , Seybold et al., (2007)

Prototyping A tool or paper based estimate of an end-system - Rettig (1994), p. 21-27

25

to achieve planned system tangibility and

validity.

- Gorschek, Fricker, et al. ,(2010)

Quality

Checks

Detailed system analysis establishing its goals,

functionalism and requirements.

- Chung, Nixon et al., (2000)

-Gorschek & Wohlin, (2006), pp.79-101

System

Analysis(SA)

Specify systems structure, functionality and

behavior using structured analysis language.

- Ross (1977), p. 16-34

-Hassenzahl, Beu et al. ,(2001), pp.70-76

- Gottesdiener, (2002)

According to Friker, S., & Glinz, M., (2010) and Fricker, S., (2012) organizations establish tasks,

procedures, associations, methods, determine business object development and methodologies for

conducting business needs analysis to identify business ideas. To fulfill the process, identification of

stakeholders for requirement analysis is key. The second approach towards identified business

requirements analysis is to focus on capturing new software requirements and RE improvement process.

The third step is to classify requirements into four main groupings namely; functional, technical,

operational and transitional requirements for easier analysis and system design. The fourth step is

attempt to interpret and record new requirements for RE improvement process. The process defines

requirements, eliminate ambiguous & vague definitions, and prioritize them based on limited project

schedule and budgets. (Yaniv Mordecai and Dov Dori, 2017) & (Kabaale, E. Mayoka, K.G. and

Mbarika, I., 2014)

Requirements analysis measures RE and REPI influence on software project, existing product processes

and human capacity. Since requirements, conflicts are inevitable, established conflict resolution

mechanisms resolve them through stakeholder’s scenario analysis. The final major process determines

how reliable and easy to use software will be through a detailed system analysis. This leads to a detailed

RE and REPI and software analysis cycle. (Yaniv Mordecai & Dov Dori, 2017)

2.3 Software Crisis

2.3.1 REPI and The “Software Quality Crisis”

According to Jones and Bonsignour, (2012), though software has widely been used in human history, it

stands to have the highest failure rates of any product in the same historical time due to poor software

quality delivery. Society heavily relies on software products to operate. Software failures form major

bases of serious consequences that go way beyond the cost-factor problems. (Eveleens, L., & Verhoef,

C., 2010), (Hastie, S., 2015), (Philip Morris International, 2015) and (Tricentis, 2018)

26

2.3.2 Causes of REPI and “Software Crisis”

Firesmith, (2003) argued that RE and REPI fail because REs use technical words during system design

that end-users do not understand, making systems irrelevant and unusable due to inadequately trained

REs who deal with the stakeholders. In most scenarios, REs assume certain common ways of

requirements and REPI implementation. This approach limits REs & REPI requirements installers and

consequently the user thus failing to resolve the initial problem(s). (Firesmith, 2007), (Zawedde, A.S.A.

et al., 2011), (S.C. Davar and M., Parti, 2013) & (Yaniv Mordecai and Dov Dori, 2017)

2.3.3 Early Signs of Software Crisis

Software product encompasses both internal factors, (probably controlled) and external factors that are

difficult to adjust and control. The outlined problems range from, qualitative, quantitative or a mixture

of the two. Successful RE and REPI processes are complex in nature and attribute to the rate of software

expansion.

To reverse the REPI and software project failure rates and resolve “software crisis”, several techniques

such as object methodology (O.O) and System Dynamics Modelling (S.D.M) have been developed

through research. Early RE and REPI methodologies (e.g. CMM, BOOTSTRAP, Trillium, SPICE and

ISO 9000) focused on definition of identified project structure, detailed schedule, budget monitoring and

controlling structures. (William, D. & Van Dyke, 2007), (D., Williams, 2000), (Pruyt, E. 2010),

(Mwangi, H. et al., (2015).

In the table below, selected are traditional RE and REPI techniques used in software project

management and their role. Most techniques assumed strict linear analysis based on control as an ideal

system methodology.

Table 2.8: Traditional Project Management Techniques and Tools. [Adapted from Williams D. and Van

Dyke, (2007)]

Technique/Tool Intended purpose

Work Structure Breakdown Definition of expected project work, schedule and cost

estimations.

Role matrixes Role assignments

Cost Schedule Identification of project capital requirements for budget

estimations

27

Project work techniques Scheduling work for network technique to determine the impact

and risks analysis, cost estimations, resource allocation and

management analysis.

Use of charts

(e.g. bar graph)

A Simple representation of project schedule without showing

procedures and relationships between activities.

Project Control Performance indexes generation to determine project over-runs

and the required corrective actions and incorporating graphs in

the technique.

A. Nasirikaljahi, (2012) stated that as early as 1979, the term “Software Crisis” coined in a public debate

as recorded in a congressional report issued by the controller general, cited the scale of problem in the

federal government and gave a summarized issue named: “Controlling of Computer Software

Development. Serious Problem Requires Management Attention to Avoid Wasting Additional Millions.”

The report indicated that the US government got less than 2% of the total value for its investment

(Abdel-Hamid, 1991: p.3), (Zawedde, A.S.A. at al., 2011) & (Kamuni, S.K., 2015), (Lech, P., 2013)

In the late 70’s and 80’s, reports on “software crisis” similarly revealed comparable trends and

contained significant RE improvement errors that lead to additional development or rework, pushing

costs and delays higher, leading to software slapping soon after its delivery. Examples of similar

scenarios reported in the congressional reports of the 1979 and several other published papers. (Thayer,

1986), (Sclender, 1989), (Frank, 1983) and (Zawedde A.S.A. et al. 2011).

According to Kabaale E., Manyoka, K. G. & Mbarika, I. (2014), the initial REPI responses to software

problems focused largely on cost overruns and delays. The focus directed towards software quality,

though the main attentions were on cost and management. Early and young software industry suffered

lack of tools for REPI analysis and management. Several published pioneer REPI studies focused on the

questions addressing software production. (Abedel-Hamid, 1991)

In the early 1990’s, the scholarly doctoral thesis work of Abedel-Hamid, (1991), contains early REPI

attempts to build a complete SD model and identify contributions of RE and REPI in fueling software

failure rate. Later, Adbed’s base model used was in the concept development in the field of software.

(Abdel-Hamid, 1991: p. 3-5)

From Abdel-Hamid’s research findings, there emerge two distinct views on the emergence of software

problems namely:

28

1. Managerial: Lack of routines and discipline ultimately results to poor management decisions

within the software industry. The distinct root cause of the software crisis demonstrates lack of

management efforts in the various stages of software development causing poor planning and cost

estimations as well as poor staffing strategies. This deficiency further speeds up the software crisis

when development demands more attention than perceived. (Abdel-Hamid, , 1991), pp. 3-5 , and

(Jones C. and Bonsignour, O. , 2012)

2. Technical Concerns: This viewpoint of the “software crisis” concern itself with the technical

software development handles that cause software delays and cost/budget overruns. Early and the

young software technical tools of trade developed during production results to delays, trials errors,

and studies that considered attempts to handle software development technical issues. However,

with these early efforts and readily available tools, “software crisis” continues to influence the

software industry. (Zawedde, A.S.A. et al., 2011), (Bjarnason, Wnuk, & Regnell, 2011) and

(Kartik Rai, Lokesh Madan & Kislay Anand, 2014)

2.3.4 Software Crisis in Modern Time
The Software industry have revolutionized over time from the emergence of the “software crisis” of the

late 90’s and early 20’s and completely changed the face of the software industry. Today, software

development industry is a gigantic business present in any part of the world. With notable

transformations in the industry’s scope, width and depth, the big question of the software problems

remain a big question, a replica of late 70’s, 80’s, early 20’s and in the current software development

industry. The big question in the “software crisis” as defined by Robert Charette’s article in the IEEE

(2014) reveals much-related situations characteristic to those reported in the congressional report.

(Kartik Rai, Lokesh Madan & Kislay Anand, 2014) and (Yaniv Mordecai & Dov Dori, 2017)

According to Charette, (2010), software projects continue to suffer budget overruns, delivery delays and

possible terminations with inconceivable losses across the globe. For example, in 2004 by according to

Charette, (2010), “the USA spent $60 billion in software contracts and with a modest failure-rate at 5%

that translated to an estimated loss of $3 billion”. Charette, (2010), speculated that the true failure-rate

could have been much higher as 15-20% of all contracts terminated or abandoned shortly before, or after

delivery. The author believed “over abandoned software cost the economy between $25 and $75 billion”

(Zawedde A.S.A., et al., 2011) and (Hastie S., 2015)

29

The second example, Charette, (2010) the Hudson Bay Corporation, experienced a serious problem with

its inventory system called “Big Ticket” aimed to revolutionize its IT infrastructure. The company’s

poor software quality contributed to a huge loss of $33.3 million when the company failed to operate the

huge and complex system it targeted to operate and manage. In Hastie. S., (2015) research paper,

(Standish CHAOS report of 2015) in the last two decades there was insignificant change in the reversal

of the observed software failure rate. This implies existing gaps in the RE and REPI efforts, and

methods for software projects improvement and alignment. (Eveleens L. & Verhoef, C. (2010)

2.3.5 REPI Alignment Challenges
The REPI process aims to ensure meeting customer’s expectations. However, to achieve RE and REPI

verification and validation, alignments of software production activities of must ensure it meets the

organization requirements. argues that the RE and REPI processes are poorly coordinated with

development and testing tasks leading to the delay of software functionality when there is a large scale

software development, RE and REPI challenges increase the cost of error rework and lowers software

quality. (Kraut & Streeter,, 1995), (Damian & Chisan, (2006), (Gorschek & Davis, (2007),

(Sabaliauskaite, et al., 2010), (Eveleens, L., & Verhoef, C., 2010) and (Hastie, S., 2015).

According to Nurmuliani, Zowghi and Fowell, (2004) the main challenges in the RE & REPI processes

is failure to adjust requirements specifications during the development phase, making it difficult for

users to create new uses. However, manual changes apply only for smaller systems and hence posing a

manger challenge for the bigger systems. Berry, Dahistedt, Natt, Regnell & Persson, (2007), Czarneeki,

Antkiewiez & Abdelrazik, (2010) argue that for successful RE and REPI’s cross communication, is

important to improve the two processes. According to the authors, most software RE and REPI

challenges facing organizations are not technical.

In market drive large-scale software production, communication between RE’s and the end-users is

weak. The main cause of large-scale software production failures include the customer decision-making

structure, engineer’s temporal aspects, lack of common views and finally the scale. (Dahisted A.G. Natt,

O. D. Regnell, B. & Persson, A., 2007) & (Bjarnason, Wnuk, & Regnell, 2011)

2.4 REPI and Software Policy Analysis
According to Michael Mutingi, et al., (2017) and Yaniv Mordecai & Dov Dori, (2017), RE and REPI

policy analysis reveals existing policy gaps. Policy analysis, the first step to policy and institutional

30

change rules and practices heavily determined relevant policies. Policy analysis examines a number of

questions in the REPI process to resolve software problems namely:

1. The issue at hand to tackle in software developments

2. Why is the issue important to the software crisis?

3. What are the relevant policy areas to the problem at hand?

4. Who are the main stakeholders?

5. What are the existing research issues on the software crisis?

6. Recommendations to address the complaint issue

7. What will the alternative policy recommendations produce?

8. How well to address possible constraints, resistance to overcome and recommendations

translated into practice.

2.5 REPI Conceptual Framework

Figure 2.1: Unified Software RE Process Management Conceptual Model (USREPM)

The figure above represents proposed expectations, a conceptual model (Damian, D. & Chisan, J.,

(2006) of software process requirements Engineering (SPRE) Reference modes.

2.8 Derived Reference Mode
This is an abstract concept, in fact, it is not historical data and is arrived through careful analysis of

historical data and a future inferred from it. Reference mode is a pattern of behavior conceptualized

from historical time series data discussed and shown in the figure below:

An increase in new RE and REPI staff leads to an increase in the cumulative wage costs that increase

pressure to complete the project in time. This will clearly show an exponential growth in the pressure to

complete the project with an attempt to bring down the monthly RE staff wage cost by reducing the need

to hire more new RE staff and training staff to reduce inexperience. Hiring more trained and experienced

REs, brings down the levels of untrained workforce. The attempts to increase RE’s staff productivity

Literature Review with regard to
Software Requirements
Engineering Process (SPRE)

Unified Software Requirements
Engineering Process Management

(USREPM)

Proposed expectations of Software Process
Requirements Engineering (SPRE) reference modes

31

takes a goal seeking approach because is a negative self-balancing loop. (Sterman, 2010) and

(Hekimoglu, M. & Barlas, Y., 2010)

Increased monthly costs due the introduction of new staff, leads to an overall increase in the total project

cost. However as the new staff get inducted into the system, this may eventually lead to an increase in

the RE’s productivity, improved and more stable work-flows even in the event of an increase in the

project completion time. (Zawedde, A.S.A. et al., 2011), (Glinz, M. & Fricker, S., 2013), (Barbara

Gladysz, et al., 2015) and (Annet Reilly, 2017)

Figure 2.2: Derived Reference Mode

2.9 Summary
This chapter provided the review of literature guided by the research objectives. The literature assisted

the researcher to come up with an appropriate research methodology in the next chapter. The reference

mode forms the base for the research methodology, objectives, strategy and development and expansion

of the REPI base model discussed in the next chapter.

32

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction
Chapter 3 outlines the research strategy, design and the objectives of each strategy. The chapter discuss

the systems dynamics modelling approach as indicated in the concepts and tools used for SD. The aim is

to enlighten the reader on SDM and its application. SD approach methods, establishes the core concepts

of systems dynamic modeling and tools used. The chapter outlines core concept of causal loop diagrams,

the causal relationships between variables and feedback loops in the system. Selected visual aids, in the

form of diagrams describe stock and flow diagrams and discuss the dynamic synthesis methodology.

The chapter details the REPI model, stock flows diagrams. Causal loops defines delay, non-linearity and

system BOT. (Gorschek, T., & Davis, A. M. 2007), (Michael Mutingi et al., 2017) and (Mwangi, H.,

Williams, D., Timothy, W., and Zipporah, N., 2015)

The research methodology outlines research study strategy that outlines the way in which research is to

be undertaken and, among other things, identifies the methods used. These methods, discus how means

or modes of data collection and specific result are calculated arrived at and. (Liuguo, S., Shijing, Z. &

Jianbai, H., 2012) & (Michael Mutimgi, et al. (2017)

3.2 Research Strategy

Figure: 3.1 Research Strategy Design

3.2.1 Research Objectives
The objective and problem are identified, problem statement formulated. Consulted literature review

identify and reference earlier research work carried out. Conducted with help of field discussion focus

groups (FDGs), study were about the existing problem. The focus field groups discursions considered

were in the research because of the need to interact with the researchers, expert groups as well as aid in

Model Simulation

Problem Statement
and Literature
Review

Field study research
Discussion Groups and use
of CLD.

Analysis

Research Design & development of (SFD)

Policy Analysis

Model Validation

RESEARCH STRATEGY

1 2

3

4

5 6

33

gathering qualitative data. Qualitative data utilized by the dynamics synthesis methodology is key in

development of causal loop diagrams (CLD). (Tveito, A. & Hasvold, P., 2002), (Zawedde, A. &

Williams, D., 2013, 2014) and (Pandey, D. & Ramani, A.K., 2010)

Case Study for Research

The qualitative research adopted design and selection of a case study approach give the nature of a

dynamic synthesis approach (DSM). The researcher selected one case study company was to participate

in the study because it represented different application domains, experience in software development

and company sizes. Based on this criteria, the researchers findings gave a general overview of the

company, their attitudes towards RE and REPI and challenges they faced. The selected company

operated in a wide range of application domains, business information systems, web based systems,

office automations, ERP’s among many others. (Tveito A. & Hasvold, P., 2002)

The target sample selected for this research study operated in a wide range of roles i.e. system users,

system administrators, programmers, project leads/experts, project managers, quality assurance and

system testers, services manager and general manager IT.

The sampling techniques methods used were the probability ones and included:

 Simple random sampling method considered was good for data collection since all the system users

were available.

 Stratified sampling method which was suitable due to my targeted population of system users

 Systematic sampling method suitable since the managers or head of ICT services represented the

users

Data Collection, Study Area, and Data Analysis, validation, and Sampling Techniques

Quantitative data was coded, collated and themed before being analyzed using IBM Statistical Package

for Social Sciences (SPSS). Descriptive statistics, including frequencies, percentages and means,

standard deviations, variance applied to extract the challenges faced in RE and REPI processes.

Using purposive sampling technique, 100 company employees to participated as respondents. This

purposive sampling used primarily targeted only personnel useful to the study given their knowledge

and skills, work experience and roles in the organization. Field data collected is grouped and analyzed

using thematic approach method to capture general and technical knowledge relating to software

development problems.

34

3.2.1.1 Population
The research population study had a total range of between 5000-6000 people focusing on company

branches (69 in total). Each company branch had at least 20 system users where eight were section

managers. From the total population, the target groups included; system developers, section heads,

database administrators, programmers, project managers, system database testers, system analysts and

auditors. A total target population of 150 people was in focus. However, the accessible population was

100 people. Interviews and questionnaire (Structured and non-structured) method was used in data

collection. The research considered eighty, (80) forms received from respondents which were

statistically analyzed using IBM SPSS after eliminating those not fully filled to eradicate

inconsistencies. (Poloudi, A., 2004), (Zawedde, et al., 2011), (Majiwaart, R., 2012) and (Pruyt, E., 2010,

2013)

3.2.1.2 Interviews

A face-to-face or direct communication for data collection where the interviewee/researcher holds a

brief discussion with the interviewer, and have either an open or a closed interview. The method

considered was most appropriate since the researcher was able to know about the existing system

through a discussion with the system users and help save on cost. (Pohl, K. & Rupp, 2011) and (Yaniv

Mordecai & Dov Dori, 2017)

3.2.1.3 Questionnaire

For FDGs data collection, the researcher prepared a set of questions and gave them to the 100 people to

answer. The method was most appropriate since the researcher was able to reach a larger number of

people and it was economically fit. (Williams, D., 2003a, 2003b), (Zawedde A.S.A. et al., 2011),

(Krishnaveni, R. & Deeper Ranganath, 2011), (Kabaale, E, Manyoka, K.G. & Mbarika, I., 2014) and

(Zawedde, A., 2016)

3.2.2 Research Design, Stock and Flow Diagrams (SFD)
After causal loops were developed, the researcher designed and synthesized the causal loop developed

using Vensim software. Stock and flow diagrams (SFD) developed using Stella Software. To create

stocks, flow, action converters, decision processes as well as graphs. For modelling and simulation, the

Stella software tool used was to develop stock and flow diagrams. (Pruyt, E., 2010) and (Michael

Mutingi, et al., 2017)

35

3.2.3 Simulation

After the stock and flow diagrams developed under different systems and sub-systems/sectors,

simulations run were to capture systems behavior over time (BOT). The model’s simulation results

displayed were in form of graphs developed through a powerful graph tool within the software.

Simulation graphs disclosed identified existing problems that applied in study of existing policies to

reverse the occurrence of the problem in future. (Hekimoglu, M., Barlas, Y., 2010), (Sterman, 2000),

(Sterman, C.D., 2003), (Sterman, J.D., Oliva, R. Linderman, K. & Bendoly, E., 2015), (Michael

Mutingi, et al., 2017) and (Zawedde, A.S.A., et al., 2016)

3.3 Research Design

Research design began with identifying the key variables with aim to define the key research objectives

of the study. Based on the objectives, a schedule is prepared to guide each focus discussion group.

(D.W., Williams, 2000). Outlined in Dynamics System Modelling (DSM), SD stood superior in

comparison to all other modelling approaches since it allowed case study development with simulation

to give a deeper problem investigation. Incorporating SD simulations into the study allowed application

of DSM methodology to strengthen case study. This combination enabled collection of data and current

on-site systems products from its natural setting, system owners, user requirements as well as

specifications needed to develop a unified and generic model. (Sterman, 2000), (Sterman, C.D., 2003),

(Sterman, J.D. Oliva R. Linderman, K. & Bendoly, E., 2015)

3.4 Research Strategy Stages
Outlined below are six stages of the research study strategy namely:

3.4.1 Problem Statement (Stage 1)
A thorough digging into literature reviews helped define the key factors that historically influenced the success of

software projects. Interviews conducted were through focus group discussions with personnel that handled system

development, project planning, human resource and other resource planning, project management, quality control,

system testing and users. The results obtained were from interviews to enrich the descriptive model representing

behavior over time (BOT). (Pruyt, E., 2010, 2013) and (Zawedde, A.S.A., et al., 2016).

3.4.2 Field Studies (Stage 2)
Field discussion groups (FGD) results determine the existence of challenges facing software

development projects. The interview’s focus was to identify existence of key variables that greatly

contribute to poor RE/REPI and overall software project failure.

36

3.4.3 Model Building (Stage 3)
Gathered information from stage two (Field studies) was used to develop the descriptive model in form

of Causal Loop Diagrams (CLD) which were presented to stakeholders for enhancements. This formed

part of qualitative research. (Michael, M.J. & Shipman, F.M., 2000), (Kotonya, G. & Summervile, I.

(1998, 2006), (Krishnaveni, R. and Deepa Ranganath, 2011) and (Kamuni, S.K., 2015)

3.4.4 Case Study (Stage 4)
Empirical investigations conducted were using data collected from the case study to populate the model.

(J., Starman, 2000), (Zawedde, A.S.A. et al., 2011), (Zawedde, A., 2016) and (Yaniv Mordecai and Dov

Dori, 2017)

Table 3.1 REPI Model Key Variables, Definition and Source. (Model expanded further later)

No REPI Key Variables Definition Source

1 Customer
Requirements

Functional and non-functional needs. -Field Discussion Groups

2 Software Quality
Assurance

-Expected software standards as defined by

user/Stakeholders needs.

-Field Discussion Groups

3 REs/Developers
Productivity

-Effectiveness and accuracy of REs, designers,

developers, quality assurance team and testers.

-Model

4 Resource/Budget - Available project resources (allocated budget),

time, hardware, software and people.

-Model
- Field Discussion
Groups

5 REs Experience - Workforce knowledge level on subject area, e.g.

design, system testing and development.

-Field Discussion Groups

- Model

6 Project

Schedule/Duration

-Agreed/proposed/projected project completion

time and duration before hand-over of software to

customer as per the contract document.

-Field Discussion Groups

- Model

To measure product quality, productivity, errors and error detection, rework rates, staff communication

levels, training conducted, staff levels, motivation, staff quit rate and replacements are included in the

model. This formed part of the data used in quantitative research. (Putnam-Majarian, T. & Putman, D.,

2015)

3.4.5 Model Simulation Experiments (Stage 5)
At this stage, scenario building, model testing, validation and simulation performed using the Stella

software interface. Inputs adjusted are to give the model’s diverse behavior output over time. (Zawedde,

A.S.A. et al., 2011), (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

37

 3.4.6 Policy Analysis (Stage 6)
Intervention measured, identified strategies and proposed policy intervention in the research design

stage towards REPI assisted the researcher carry out informed policy analysis by evaluating obtained

results, comparing them to literature reviews to give informed critique policies on the REPI process.

(Zawedde, A. & Williams, D., 2013, 2014), and (Zawedde, A., 2016)

Figure 3.2: Dynamic Synthesis Methodology [Adapted from D.W., William, 2000]

The above figure represents the dynamic synthesis model towards requirements improvement process.

(D.W., Williams, 2000)

3.5 System Dynamic Development Methodology

The RE improvement process guides software development to meet desired requirements on time and

budget. The RE improvement process aligned is in three phases that include pre-project, project life

cycle and post-project. (Hekimoglu, M. & Barlas, Y., 2010), (Gloria, P. et al., 2014)

3.5.1 Pre-Project

The first phase of SDM involves identifying the project and searching for project sponsors. Project

managers ensure the project team is highly disciplined. (IEEE, 2012-2017), (D.W., Williams, 2000),

(Gloria, P., 2014), (Majiwaart, R., 2012), (Pruyt, E., 2013, 2014), (Daneva, M., 2016) and (Yaniv

Mordecai & Dov Dori, 2017)

3.5.2 Project Life-Cycle (PLC)

The second stage of SDM encompasses a number of activities namely:

 Performing the feasibility study

 Performing the business study

 Function model iteration

 Design and build iteration

 Implementation

38

3.5.3 Post-Project

The last stage of the DSM that involves system testing and maintenance. The stage checks the system

functionality and achievement of software requirements. (D.W., Williams, 2000), (Cuellar, M., 2011),

(Friker, S. & Glinz, M., 2010) (Wolstenholme, E.F., 2004), (Lang, M. & Duggan, J., 2012), (Pruyt, E.,

2010, 2013), (Lech P., 2013) and (Michael Mutingi, et al., 2017)

Conclusion

Resources/budget and allocation, staff capacities (training & experience), workforce productivity,

requirements, schedule and software quality are major variables that directly affect the RE and RE

improvement process and quality software delivery. Improved loops for the model capture other

variables that affect the RE, REPI and software quality that are included in the model expansions.

(Zawedde, A.S.A. et al., 2011), (Mohapatra S. & Gupta, K., 2011), (Zawedde, A. & Williams, D., 2013,

2014), (Putnam-Majarian T. & Putman, D., 2015) and (Zawedde, A., 2016)

39

CHAPTER FOUR: THE MODEL AND RESULTS OF THE MODEL

4.1 Introduction

This chapter discusses the models structure and design. Field data results presented and conceptualized

by using of the model. The section expounds on the second research strategy discussed in chapter 3 and

forms a strong foundation of the third research strategy (Data Analysis). The model causal loops and

simulation results shown are in this chapter.

Using Vensim software, key causal loops diagrams (CLD) are assembled. Using the Stella software

further reconstructs the causal loop diagrams to include stocks and flow, converters, action connectors,

sector frames and graphs to graphically present results and their associated CLDs. The results shown in

this chapter are without discussion but discussed are in detail in the next chapter.

The dynamic relationship between sub-system and sub-sector variables in the conceptual model is that

the original Abdel-Hamid model Abdel-Hamid, (1991) failed to establish and simulate. This chapter

contains causal loop diagrams for the various sub-sectors/sub-systems and their dynamic relationships

between them. The causal loop diagrams represent various interlinked sub-sectors in the overall system

or model diagram. System dynamic approach methods provide valuable tools to depict the causal loop

diagrams and stock and flow diagrams. (Wolstenholme E. F., 2004), (Gorschek, T., & Davis, A.M.,

2007) and (Michael Mutingi, et al., 2017)

Quality assurance, rework and testing are central processes considered key towards REPI and software

quality improvement. Staff productivity is major in achieving the three central processes. The client is

important in testing the software product quality. The final model demonstrates the dynamic hypothesis

for the proposed REPI enhancements through the stock and flow diagrams, depicting the major parts as

well as the possible variables.(D.W., Williams , 2000) and (Williams, D., 2003a, 2003b), (Zawedde, A.

&Williams, D., 2013, 2014), (Zawedde, A.S.A, et al, 2011) and (Zawedde, A., 2016)

4.2 Model Variables

Model variables can be endogenous while others exogenous. System dynamics behavior and patterns

emerge from the endogenous variables. Some variables are included or excluded in the model. The core

aim of the model is to identify the causal relationship of the production process from the project launch

time to the testing phase. It is therefore clear that the model assumes planning and budgeting activities

are pre-determined and initiated. The assumptions are therefore that the process to determine the

40

system’s requirements is finalized, funds allocated as well as determination of the workforce

capabilities. Hence considering the factors exogenous. The model excludes post-development activities,

efforts, post-production, maintenance and system re-design. The model includes endogenous activities

that affect production activities such as design, coding and quality assurance, re-work and testing.

(Zawedde & Williams, 2013) and (Yaniv Mordecai & Dov Dori, 2017)

The table below gives examples of endogenous, exogenous and excluded variables.

Table 4.1: The REPI Model: Endogenous, Exogenous and the Excluded Processes. [Adapted from Yaniv
Mordecai and Dov Dori, (2017)]

Endogenous Exogenous Exempted activities

Software design activities Testing work force needed per activity. Software maintenance

Software Coding Coding effort required. Consultancy/far staff

Quality Assurance and

Rework

Testing effort overheads. Requirements definition

Software Testing Maximum tolerable staff exhaustion Requirements

definitions

Human Resource Management Exhaustion Clients pressure

The table above shows endogenous processes and excluded activities according to the identified

boundaries. The goal is to identify the causal relationship and the resultant behavior pattern(s) generated

between the actor(s) within the production cycle. This excludes the consultancy or the far staff needed.

The preliminary planning activities and requirements defined excluding the project-budget since it lies

outside the main software development activities. The model assumes that the client’s demands are

constant. The model itself excludes the clients. Hence, the development team un-subjected to the client’s

pressure and regarded to be agents outside the base model. These are the profound main boundaries of

the base-model. (Abdel-Hamid, 1991: p.20) and (Michael Mutingi, et al., 2017)

Literature review reveals that software quality and “customer satisfaction” are related; hence,

development acceptance, testing, end-user reviews and the client should be included as important factors

in the model. These factors eventually lead to client satisfaction. To review the satisfaction levels, a

model boundary is included to link the work force allocated by management to the work force allocated

by the client to the client-reviewing process. The aim is to expand the model’s boundary, to capture and

enhance software quality as well as emerging software quality policies. The table below indicates new-

model boundaries for the proposed enhanced base model.

41

Table 4.2: Endogenous, Exogenous and Excluded Processes in the Enhanced Base-Model. [Adapted
from Cuellar, (2010)]
Endogenous Exogenous Exempted activities

Software Design Client re-viewing work force. Software maintenance

Software Coding Client work force to review. Consultancy/far staff

Quality Assurance and Rework Client manpower to review Requirements definitions

Client testing Client work force productivity

and efficiency.

Clients pressure

Human Resource Management Changing clients demand

The process excludes clients changing demands and pressure. The key determinant variables are the

client-testing side staff, experience not affected by the other factors therein.

4.3 System Model Boundary

The system’s model boundary provides the scope and applicability to the phenomenon they mean to

represent. Systems models are a representation of the real world processes and the relationship between

identified variables and recreates them inclusively in the real world. The absence of a clear system

boundary may result to variable’s displacement and observed behavior details. According to Sterman,

2003), it is important to have an unambiguous boundary.

4.4 Time Scope
Time’s horizon varies from project to project, project size, complexity as well as scope. From Abdel-

Hamid’s original model, (Abdel-Hamid, (1991) analysis, for medium projects the paper considers

projects that run for about 430 days having an average project delay of 33%. Considering the previous

research studies/projects did not resolve the “software crisis” to include all the project activities from

start to the end the study considers 800 days (2.1 years) to cater for the other factors that are exogenous

to affect the set time scope.

4.5 The System Model Structure for the USREPM System

Figure 4.1: The USREPM System Model Structure

42

4.5.1 User Interface:
The USREP interface structured using Stella version 9.0.2, contains links to the model design map that

contains the stock and flow diagrams (SFD), and the model equations.

4.5.2 System Stock and Flow Diagrams (USREPM System/Subsectors)

4.5.2.1 Software Project Management Sub-System/Sector

Figure 4.2: Software Project Management System/Sector

4.5.2.2 Human Resource Management System/Sector

Figure 4.3: Human Resource Management System/Sector

43

4.5.2.3 Manpower Allocation Sub-System/Sector

Figure 4.4: Manpower Allocation Sector

4.5.2.4 Development & Productivity Sub-System/Sector

Figure 4.5: Software Development & Productivity Sub-System/Sector

4.5.2.5 Quality Assurance & Re-Work Sub-System/Sector

Figure 4.6: Quality Assurance & Re-Work Sub-System/Sector

44

4.5.2.6 System Testing Sub-System/Sector

Figure 4.7: System Testing Sub-System/Sector

4.5.2.7 Controlling Sub-System/Sector

Figure 4.8: Controlling Sub-System/Sector

4.4 System Model Stock & Flows Diagram Relationships

 Figure 4.9: USREPM System SFD/ Relationship Diagram

45

4.5 Causal Loop Diagrams (CLD)

Figure 4.10: System Testing Causal Loops Diagram

The system-testing subsector is the final sector of the software production cycle.

Figure 4.11: Human Resource Management Causal Loops Diagram

Experienced workforce positively increases the total workforce number as well as the accumulative

expected mandays. (Chapter 5: Human Resource Management Subsystem), this subsystem manages and

controls the hiring and management of the total project work force. (Zawedde, A. & Williams, D., 2013)

Scheduled
Completion Date

Time Remaining

Indicated
WorkForce

WorkForce Level
Needed

Sought
WorkForce

Cumulatative
Exepected Manday

Man-Day
Remaining

+

-

+

-

+

+
Total WorkForce

Level

+

+

+ B1

R1

Figure 4.12: Planning Subsystem Causal Loops

Hiring
Newly Hired
Workforce

Experienced
Workforce

Total
Workforce

Number
Cummulative

Expected
Mandays

Remaining
Mandays

Scheduled End
Date

Remaining
Time

WorkForce
Level

Required

Sort WorkForce

Max NewHire

Max Total Sustainable
WorkForce

+

-

+

+
+

+

+

+

-

+

+

+

+

B1

R1

R2

System Testing

Detection of
Active Errors

Active Error
Generation Rate

Active Error
Density

Undetected Active Errors
From QA and Rework

Detection of
Passive Errors

Undetected Passive
Errors from QA and

Rework

Passive Error
Density

Testing WorkForce
Per Task

+

+

+

+

+

+

+

-

-+

+

+

+

B1R1

R4

B2

R3

R2

46

Detected Errors For
ReworkingPercentage Of Actual

Work Done

Cumulative
Developed Tasks

New Discovered
Tasks

New Tasks Thought
Still Remaining

Perceived
Productivity

Mandays Increase Due to
New Discoverd Tasks

Total Job Size In
Mandays

Remaining
Mandays

Tasks Remaining To
be Tested

Software
Developed

Schedule Pressure

WorkForce level
Required

Manpower Required To
Rework On Detected

Errors

Cumulative
Expected
Mandays

+

+

+

+

Cumulative Tested
Tasks

+
- ManDaysStill

Required For Testing
++

Perceived Percentage
Of Word Done+

+

+

+

+
+

Total WorkForce
Level

+

+
-

+

-

+

-

Mandays Required To
Work On New Tasks

+

+

+

+

-

B5

R1

B1

B4

B3

B2

R2

R3

+

R4

 Figure 4.13: Controlling sub-system Causal Loops Diagram

Percentage of
Actual Work

Done-P

Software
Developed-P

Schedule
Pressure -P

Daily ManPower For
Software Development-P

+

+

+

Total WorkForce
Perceived Still

Needed-P

-

+

Perceived WorkForce
Manday Shortage

Manday Absorbed

Needed Boost For
Software Development

Actual Manday
Fraction On Project

Staff Exhaustion
Level

OverWork Duration
Shreshold

Max Workable
Manday Shortage

Willingness To
Work Overtime

WorkForce
Efficiency

Software Dev
WorkForce
Productivity

+

+

+

+

-
+

- +

+

+

+
+

+

B2

B1

B4

B3

Figure 4.14: Software Development Productivity Sub-sector Causal Loops

The sub-sector’s focus is on the software development phase. Management conceive and make

predictions of the rate at which software needs to be developed. (See Chapter 5: -Software Development

Productivity Subsectors)

ManPower
Aloocation

Software
Development

Quality Assurance
and Erroe Rework

System Product
Testing

 SoftwareDeveloped

E
rr

or
s D

et
ec

te
d

Te
ste

d
Ta

sk
s

ManPower For
System Testing'

Manpower Allocated For
QA & Errror Rework

ManPower For
Software Development

Developed Software Product QA & Reworked Software Product
Figure 4.15: Software Production Sub-Systems Causal Loop Diagram

47

 Figure 4.16: Quality Assurance & Re-Work Sub-Sector

The rework process involves staff drawn from the QA team who identify and fix errors (see Chapter 5:

Rework Manpower Effort)

Figure 4.17: Enhancement of Effort for Re-Work Process. (Zawedde, A., 2016) (Chapter 5:

Rework Manpower Effort)

48

Error Detection and Rework Detection Rate

Software
Developed

Tasks
Quality
Assured

% of Work
Actually Done

Error
Generation

Detected
Error

Density

Daily Manday for
Software

Development

Schedule
Pressure

Detected Errors
Awaiting Rework

Error Detection

QA Manpower To
detect Average Error

Rework
Daily Manpower

Allocated for Rework

Rework
Manpower
Needed for

Average Error

Software Development
Productivity

Daily
Manpower

Allocated for
QA

Potential
Detected Errors

+

+

-

+

-

+

+

+

-
-

+ -

+

+

+

+

-

+

-
-+

-

-

-

R3

B4B2

B1

B5

R5
R1

B6

R6

R4

B7

B3

R2

Figure: 4.18: Error Detection and Rework Detection Rate

Quality Assurance Sub-System & Rework /Sub-Sector

Quality Assurance Sub-systems and sub-sectors focus their attention to error detection (see Chapter 5:

Software Errors Rework Process, Rework Manpower Effort, Error Detection Rework & Error detection

rate).

Figure 4.19: Effects of Error Generation Rate CLD)

Schedule pressure affects error generation, work rates and work force productivity (Chapter 5: Error

Generation and Error Generation Rate). (Cooper et al., 2009), (Zawedde A & Williams D., 2013) and

(Zawedde, A., 2016)

Error Densities

Figure 4.20: Effects of Error Densities on Re-Work and QA Staff Allocation (CLD)

Error detections in various software development stages increase error densities (see Error densities,

error detection and rework detection rate in chapter five)

49

Schedule
Pressure-MA

Total WorkForce
Perceived Still

Needed-MA

Daily ManPower
For Production

Daily ManPower
For Rework

Daily ManPower For
Dev & Testing

ManPower Alocated To
Software Development

Software
Developed-MA

QA Manpower Needed
For AveverageError

Detection-MA

Error
Detection-MA

Error Rework

Detected Errors
For Reworking

Manpower Required To
ReWork On Detected

Errors

Daily ManPower
Aloocated For QA
-

-

+

+

-

Percentage of
Actual Work Done-

MA +

-

-

+

-

-

+
+

+

Rework Manpower
For Average Error

-

-

B2

B1
R1

Figure 4.21: Manpower allocation Sub-system/sub-sector CLD.

Hiring
Newly Hired
Workforce

Experienced
Workforce

Total
Workforce

Number
Cummulative

Expected
Mandays

Remaining
Mandays

Scheduled End
Date

Remaining
Time

WorkForce
Level

Required

Sort WorkForce

Max NewHire

Max Total Sustainable
WorkForce

+

-

+

+
+

+

+

+

-

+

+

+

+

B1

R1

R2

Figure 4.22: Human Resource Management Causal Loops Diagram

4.6 Model Simulation Graphs/Results

 Software Errors Rework Process

10:46 PM Sat, Oct 6, 2018Page 10
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

1

0

5

9

0

2

3

0

1

2

1: Daily …ated For QA 2: Errors…dForRework 3: Rework…erage Error 4: Error Rate 5: Software Developed

1

1

1

1

2 2 2 2

3

3

34 4 4

5

5 5

Figure 4.23: Effect of Error Rework Processes on software production

The error rework process focuses on the REPI and software quality. (See Chapter 5: Software Error

Reworks) (Zawedde, A., et al... 2011, 2014, 2015) and (Zawedde, A., 2016)

50

Re-Work Manpower Effort

10:46 PM Sat, Oct 6, 2018Page 41
0.00 3.00 6.00 9.00 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

0

0

2

3

0

0

0

47

48

49

1: Manpow…ted Errors 2: Rework…erage Error 3: ErrorRework 4: Perceiv…Productivity 5: Productivity

1 1

12

2
2

3 3 3

4

4

5 5

Figure 4.24: Effects of Rework Manpower Effort on Software Quality

Error density in software heavily affects its quality. (Zawedde, A. & D. Williams, 2013, 2014) and

(Zawedde, A., 2016) (See Chapter 5: Rework Manpower Effort)

Error Rework Rate

10:46 PM Sat, Oct 6, 2018Page 42
0.00 3.00 6.00 9.00 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

-0

-0

0

0

0

0

0

0

1

0

0

0

0

0

0

1: DailyM…For Rework 2: Perceiv…Productivity 3: Errors…dForRework 4: Detect…workingRate 5: Daily …ated For QA

1

1 1

2

2
2

3 3 3

4

4

5

5

Figure 4.25: Effects of Error Rework Rate on the REPI process

Work force effort allocated rework process depends on the rework job and the number of rework errors

awaiting rework and the perceived rework work force productivity. (See rework rate in chapter five)

Error Detection and Error Detection Rates

11:04 PM Sat, Oct 6, 2018Page 58
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

1

0

0

0

0

1

2

0

0

0

0

0

0

1: Errors…dForRework 2: Manpow…ted Errors 3: Software Developed 4: Potenti…able Errors 5: Detect…workingRate

1

1 1 12

2

2

2

3

3
3

4

4
4

5

5

5

Figure 4.26: Effects of Error Detection and Detection Rate on REPI and Software Quality

51

Error remains potentially detectable but hidden until tasks review and testing. Some go undetected while

others remain to the last stage (testing) and corrected through rework. (Chapter 5: Error Detection and

Rework Detection Rate) (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

Quality Assurance Subsystem & Rework /Sub-Sector

11:20 PM Sat, Oct 6, 2018Page 25
0.00 3.00 6.00 9.00 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

-0

-0

0

0

0

0

0

1

1

0

0

0

1: Perceiv…Productivity 2: DailyM…For Rework 3: Daily …ated For QA 4: Errors…dForRework 5: Total M…till Needed

1

1

1
2

2

2

3
3

3

4 4

5

5

Figure 4.27: Effects of Error Detection Rate on Software Quality Assurance

Error detection as a QA function has a significant effect on the number of errors detected. (Zawedde, A.

& Williams, D., 2013, 2014) and (Zawedde, A., 2016) (See Chapter 5: Quality Assurance Sub-system

and Rework Sub-sector)

11:33 PM Sat, Oct 6, 2018Page 59
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

4

4

4

0

0

1

-0

-0

-0

0

0

0

1: Experie…affQuitRate 2: Experi…edWorkforce 3: Error Generation 4: Sort WorkForce 5: Staff Ex…ion Level[2]

1 1 1 1

2

2

2

2

3

3

3

4

4

4

5 5 5

Figure 4.28: Effects of Error Generation Rate on Workforce Level

(See Chapter 5: Quality assurance sub-system and rework Sub-sector). (S.C., Davar & M., Parti,

2013), (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

11:47 PM Sat, Oct 6, 2018Page 60
0.00 3.00 6.00 9.00 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

-0

-0

0

0

1

1

0

0

0

-0

-0

0

0

0

0

1: DailyM…For Rework 2: Errors…dForRework 3: Detect…workingRate 4: Daily M… Production 5: Manpow…ted Errors

1

1

1

2 2 2
3 3

3

4
4

5

5

Figure 4.29: Effects of Error Densities on Re-Work and QA Staff Allocation (See Chapter 5:

Error Densities, Error Detection and Rework Detection Rate)

52

Productivity, Rework Rate and Work Force Needed

11:56 PM Sat, Oct 6, 2018Page 61
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

1

-0

-0

0

0

0

1

0

0

0

1: Rework…erage Error 2: Errors…dForRework 3: Tasks …o BeTested 4: QA & Rework 5: WorkFor… Efficiency

1

1

1

1

2 2 2 2

3

3

3

4

4

4

5

5

5

Figure 4.30: Productivity, Rework Rate and Workforce Needed for REPI

Peak productivity can be achieved when a staff or team of staff work at their peak efficiency. (Zawedde,

A. & Williams, D., 2013, 2014), (Zawedde, A., 2016) and (S.C., Davar & M., Parti, 2013) (See Chapter

5: Productivity, Rework Rate and Workforce Needed)

Effects of Productivity, Re-Work Rate and Work Force Absorbed

12:10 AM Sun, Oct 7, 2018Page 62
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

1

1

2

0

0

0

0

1

1

-0

-0

-0

0

1

2

1: MandayAbsorbed 2: Detect…workingRate 3: Detect…ework Rate 4: Sort WorkForce 5: Software Developed

1 1 1 12

2

2

2

3 3

3
4

4

4

5

5 5

Figure 4.31: Effects of Productivity, Re-Work Rate and Workforce Absorbed. (See Chapter 5:

productivity, Rework Rate and Workforce Needed) (S.C., Davar & M., Parti, 2013)

Effects of Experience and Learning on Staff Overall Productivity

12:24 AM Sun, Oct 7, 2018Page 49
0.00 3.00 6.00 9.00 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

7

7

7

0

0

0

0

15

30

0

1

1

1: Perceiv…Productivity 2: Experi…edWorkforce 3: Experie…affQuitRate 4: Newly …d Workforce 5: Experie…ransferRate

1

1

12

2

2

3 3 3

4

4

5 5

Figure 4.32: Effects of Experience & Learning on Staff Productivity

53

Experienced staff carry higher productivity and a bigger output potential than the newly hired.

(Zawedde, A. & Williams, D., 2013, 2014), (S.C., Davar & M., Parti, 2013) and (Zawedde, A., 2016).

(See Chapter 5: Effects of Experience and Learning on Staff Overall Productivity)

Effects of Communication on Staff Allocations

12:33 AM Sun, Oct 7, 2018Page 63
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

-0

-0

0

-0

-0

0

-6

-3

1

0

0

0

-0

-0

0

1: DailyM…For Rework 2: Daily M… Production 3: ManPow…ftware Dev 4: Daily …ated For QA 5: Project…atus Report

1
1

1

1

2

2
2

2

3 3 3

4

4

4

5

5 5

 Figure 4.33: Effects of Communication and Briefing on Project Staff Allocations

Communication by nature in the project is an overhead. (D.W. Williams, 2000), (Williams, D., 2003a,

2003b), (Zawedde, A. & Williams, D., 2013, 2014), (Zawedde, A.S.A. et al., 2011) and (Zawedde, A.,

2016)

Manpower Per Average Error against Efficiency

12:44 AM Sun, Oct 7, 2018Page 64
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

0

0

0

0

0

0

0

-1

0

1

1: Detect…workingRate 2: QA Ma…r Detection 3: Daily …ated For QA 4: Manpow…ted Errors 5: WorkFor… Efficiency

1

1

1

1

2

2

2

2

3

3

3
4

4

4

5 5 5

Figure 4.34: Manpower per Average Error against Efficiency

Wrong decisions on the average number of errors that each staff can handle per day may lead to

overworking and loss of motivation. (Zawedde, A. & Williams, D., 2013, 2014), (Zawedde, et al.,

2011), (S.C., Davar & M., Parti, 2013) and (Zawedde, A., 2016) (See Chapter 5: Effects of

Communication and Project briefing on Staff Allocation)

54

Software Bugs Fixing

1:01 AM Sun, Oct 7, 2018Page 65
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

-3

-1

1

-0

-0

0

0

1

1

0

0

0

1: Potenti…able Errors 2: ManPow…ftware Dev 3: Project…atus Report 4: Errors…dForRework 5: ReportingDelay

1

1

1 1

2 2 2 23

3
3

4 4 4

5 5 5

Figure 4.35: Effect of Early Error Detection and Fixing (Goal Seeking)

Error fixing in REPI is a development function. (Zawedde, A. & Williams, D., 2013, 2014), (Zawedde,

A.S.A. et al., 2011), (Putnam-Majarian, T. & Putman, D., 2015) and (Yaniv Mordecai & Dov Dori,

2017) (See Chapter 5: Bug Fixing)

Staff Motivation and Exhaustion

1:10 AM Sun, Oct 7, 2018Page 66
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

0

0

0

0

-0

-0

0

0

0

0

1: Staff Ex…ion Level[1] 2: WorkFo…hreshold[1] 3: TurnOver 4: Softwar…Productivity 5: Willing… Overtime[2]

1

1
1 1

2

2 2 2

3
3 3

4

4

5 5 5

Figure 4.36: Effects of Over-Work and Staff Motivations on Productivity (S-Shaped)

Staff motivational factors may remain constant or change over time during software production process.

(Zawedde, A. & Williams, D., 2013, 2014), (Zawedde, et al., 2011), (S.C., Davar & M. Parti, 2013) and

(Zawedde, A., 2016) (See Chapter 5: Staff Motivation)

55

Effects of Workforce Exhaustion on Software Development Projects

1:23 AM Sun, Oct 7, 2018Page 67
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1: Percei…ay Shortage 2: Willing… Overtime[1] 3: Staff Ex…ion Level[1] 4: WorkFo…hreshold[1] 5: WorkFor… Efficiency

1

1
1 12 2 2 2

3
3 3

4
4 4

5

5

5

Figure 4.37: Effects of Workforce Exhaustion on Software Development

Staff exhaustion due to overwork pressure tends to have a negative effect on workforce productivity rate

over time in a project. (Zawedde, & Williams, D., 2013, 2014), (Zawedde, A.S.A et al., 2011),

(Zawedde, A., 2016), (Williams, D. (2003a, 2003b) and (Kamuni, S.K., 2015)

 1:43 AM Sun, Oct 7, 2018Page 68
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

0

1

7

7

7

0

15

30

0

0

1

0

0

0

1: Error Generation 2: Experi…edWorkforce 3: Newly …d Workforce 4: Errors…dForRework 5: Commu… Overhead

1

1

1
1

2

2

2

2

3

3

3

4 4 45 5 5

Figure 4.38: Effects of Staff Experience on Software Process

Experienced staff better detect and generate fewer errors, handle more tasks at a time and effectively

rework on detected errors. (D.W. Williams, 2000), (Williams, D., 2003a, 2003b), (Kamuni, S.K., 2015)

and (Zawedde, A., 2016)

 Determination of Project Staff Levels in Software Projects

2:07 AM Sun, Oct 7, 2018Page 69
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

15

30

6

7

7

-0

-0

-0

8

12

16

0

2

3

1: Newly …d Workforce 2: Experi…edWorkforce 3: Sort WorkForce 4: Total …ForceNumber 5: Software Developed

1

1

1

1
2

2

2

2

3

3

3

4

4

4
5

5

5

Figure 4.39: Decisions to Determine Project Work-Force Level

56

The management determines the necessary staff level to complete the project within the scheduled time

based on the perceived remaining tasks. (Zawedde, A. & Williams, D., 2013, 2014), (Zawedde, A.S.A.

et al. 2011, 2016), (D.W. Williams, 2000) and (Williams, D., 2003a, 2003b) (Chapter 5: Determination

of Project Staff Levels)

 Effects of Turn-Over on Projects

2:29 AM Sun, Oct 7, 2018Page 70
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

10

20

-0

0

0

0

0

0

0

1

1

0

1

2

1: Newly …d Workforce 2: Experie…affQuitRate 3: TurnOver 4: Target …letion Date 5: Software Developed

1

1

1

1

2 2 2 23
3 34 4 4

5

5

5

Figure 4.40: Effects of New Hire, Staff Assimilation and Turnover on Workforce Productivity

Turnover affects the workforce and expresses itself as the quit rate of the experienced workers. (D.,

Bator, 2014) (Zawedde, A. & Williams, D., 2013, 2014), (D.W. Williams, 2000), (Williams, D., 2003a,

2003b), (Kamuni, S.K., 2015), (Zawedde, A.S.A. et al., 2011) and (Zawedde, A., 2016), (See Chapter 5:

Turnover)

Cost of Errors on Projects

10:58 AM Sun, Oct 7, 2018Page 71
0.00 2.40 4.80 7.20 9.60 12.00

Months

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

2.5e+028

5e+028.

0

0

0

0

1

2

0

0

0

0

0

0

1: All Errors 2: Manpow…ted Errors 3: Software Developed 4: Staff Ex…ion Level[1] 5: TurnOver

1 1 1 1

2

2

2

2

3

3
3

4
4 4

5
5 5

Figure 4.41: Cost of Errors on Software Projects

The QA policy has a significant impact on the total project cost. (Williams, D., 2003a, 2003b),

(Svahnberg M.T., Gorscheck, R., Torkar, S., Saleem, B. & Shafique, M.U., 2010), (Zawedde, A. &

Williams, D., 2013, 2014), (Zawedde A, 2016) and (Kamuni, S.K., 2015) (See Chapter 5: Cost of

Errors)

57

CHAPTER FIVE: DISCUSSION OF RESULTS

5.1 Introduction

Chapter five forms a detailed discussion of results obtained in the fourth research strategy (research

design) and a strong foundation for quantitative research founded from the fifth research strategy. In the

chapter, the researcher discusses the model’s stimulation results (Stella graphs) based on associated

causal loops in chapter 4. The simulation’s behavior is compared with past findings and accounts for the

researcher’s opinions for and against the existing REPI models such as Abdel-Hamid’s base model and

the current REPI process, methods, procedures and the causes of software failure. At the end of the

chapter are equations arrived at to achieve results of the CLD variable relationships. (Abdel-Hamid,

T.K., 1991), (Hekimoglu, M. & Barlas, Y., 2010), (Zawedde, A.S.A et al., 2011), (Annet Reilly, 2017),

(Zawedde, A. (2016) and (Michael Mutingi, et al., 2017),

After the model’s structural development, system simulations follow to achieve the goal of validating

the problem statement and literature review finding. (Ferraira, et al., 2009) and (Friker, S. & Glinz, M,

2010)

From literature’s review, Abdel-Hamid’s base model provided empirical data to offer a range of

between 6 to 10 percent with a constant industrial average of 7.5 % of successful software projects.

Recent literature reviews gave an average of 7%. This is however contrary to the true project report of

bad fixes, which stands at 2%. Very unsuccessful projects give as high as 25% of bad error fixes

generation. (Jones & Bonsignour, 2012), (IEEE, 2017), (Eveleens, L. & Verhoef, C., 2010), (Daneva,

M., 2016) and (Hastie, S., 2015)

The other area of focus is the rate at which the rework process generates bad fixes. The error density,

schedule pressure and the levels of experienced work force influences the rate of bad error fix

generation. Bad-fixes are an influencing factor or source of increased re-work and constitute to a big

percentage of errors occurring in the system (Jones, 2007) (Glinz, M. & Fricker S., 2013) and (Zawedde,

A., 2016)

Causal loop diagrams work as important tools used for identifying the possible logical links between

various variables inside a dynamic system. The resultant causal loop diagrams that identify all variables

and factors that influence the error density on the rework process, form part of the larger overall model

58

connection. All the sub-systems will be enhanced further to form part of the larger system in the overall

model design. (Williams, D., 2003a, 2003b)

5.2 Software Errors and Rework Process

The rework process identifies the REPI process as one of the main focal points of software quality

improvement. In the original model Abdel-Hamid, T.K., (1991), the rework process missed out two

important concepts that greatly influence software product quality.

One of the key areas of REPI is the effort required during the rework process. In the original model, the

rate of rework effort greatly influenced is by the effort needed per average error during the rework

process. The determinant factor is the rework work force needed to re-work on a specific type of error

and the effects of communication and overhead losses. These two factors affect the rework rate. Error

density and staff productivity influence the rework process needed per average error. (Mijwaat, R.,

2012), (Lech, P., 2013), (Pruyt, E., 2010, 2013), (Pranjali, K. & Dhananjay, S., 2014), (Putnam-

Majarian, T. & Putman D., 2015) and (Zawedde, A., 2016)

5.3 Re-Work Manpower Effort

Abdel-Hamid, T.K., (1991), Putnam-Majarian, T. & Putman, D. (2015), Williams D. (2003a, 2003b),

Zawedde, A.S.A. et al., (2011) and Zawedde, A., 2016) put forward assumptions that error densities

heavily influence the REPI and software quality assurance.

As software development shifts from the design to the coding phase in the design, the effort required to

detect average error is higher than in the coding phase. The effect relates to the fact that design errors

are artful and hence harder to detect than coding errors. The errors are more in the coding phase. This

implies that the error density increases from design to coding. This increase in density provides more

information on hidden errors. (Abdel-Hamid, 1991: p.105), (Solomon, B., Shahibuddin, S. and Ghai, A.

2009) and (Yaniv Mordecai & Dov Dori, 2017)

The rework process involves staff members from the production team. The team identifies the errors and

fixes them or gather errors awaiting rework. The QA team gathers coding errors reveals design errors

and hands them over to the rework team. Design errors are harder to rework hence the average effort

required per error is greater than for coding errors. Design errors are not passive and they themselves

generate code-errors with a higher error rate and increases the error density. The Quality Assurance and

Rework Sub-Sector with new loops shown in chapter 4 provides improvements enhancing the effort for

59

the rework process. (Zawedde, A. & Williams, D., 2013, 2014), (Zawedde, A., 2016) and (Pruyt, E.,

2010, 2013)

Re-Work Manpower Effort Balancing Loop (B1):

This loop relates to the percentage of work done on the project, development productivity, and the

rework effort process. Percentages of work-done increase as production proceeds, learning continues

and the team gains a clear picture of the software develop and how it works. The learning, experience

and knowledge sharing (S.C., Davar & M. Parti, 2013) process allows for an accelerated production rate

and in a more efficient manner increases the rate of error detection, error correction and rework.

Eventually, the required effort per average error decreases and outputs a negative relationship between

productivity and the effort per average error. (Zawedde, A.S.A. et al., 2011)

Re-Work Manpower Effort Balancing Loop (B2):

A decrease in the workforce needed per average error has direct influence on the daily work force

required/allocated for rework. Decrease in the effort to correct errors lowers the daily work force

allocated for rework. A lower daily work force allocated for the rework effort decreases the rework rate,

increases detected errors awaiting rework. Increase in the schedule pressure prompts management to

make drastic decisions to increase the rate of software development. The adjustments undertaken

eventually lead to an increased development and production rate. (Williams, D., 2003a, 2003b)

(Zawedde, A. & Williams, D., 2013).

Re-Work Manpower Effort Balancing Loop (B3):

This loop concerns itself with the efforts to improve software production, error rework and efforts

triggered by the detected error density, quality assurance efforts towards REPI and high quality

software. A lower error detection density triggers the emergence of a harder rework process

performance and influence in the rework work force required to work on an average error. On the

contrary, when error density is high, an error pattern learning process (S.C., Davar and M., Parti, 2013)

trickles in on how well to handle the existing as well as emerging errors. This effort results into a

decrease in the rework effort required to resolve an average error and reduction of errors awaiting

rework, decreasing the error density. (Philip Morris International, 2015), (Zawedde, A. and Williams,

D., 2013), (Zawedde, A, 2016)

Re-Work Manpower Effort Reinforcing Loop (R3):

60

The final reinforcing loop in the system concerns itself with the relationship between the number of

errors detected (Error density) and the rework effort needed and the process itself.

An increase in the error density as software development as it moves from design to coding phase,

translates into an increase in coding errors and the generated error pattern makes it easier to resolve

them. The error pattern learning, though expectations are that an increase in the error density leads to a

decrease in the work force needed to per error. With the observed decrease in the workforce needed per

error, downward adjustments made are to the work force allocated to rework on errors. With a reduction

in the work force allocated for rework, the rework-rate decreases tremendously as well. This leads to an

increase in the number of detected errors awaiting rework. The number of errors detected increases

because of a decreased detection and rework rate. (Williams, D. 2003a, 2003b), (Zawedde, A. &

Williams, D., 2013, 2014) and (Zawedde, A., 2016)

5.4 Software Error Rework Rate

Detected errors throughout the quality assurance activities management step in and assign staff to

correct the identified errors. (Sterman, J.D., Oliva, R. & Linderman, K. & Bendoly, 2015)

The work force effort allocated to the rework process depends on the rework job, rework errors awaiting

rework and the perceived rework staff productivity. (S.C. Davar & M. Parti, 2013). The desire is to set

goals for predefined amount of error rework per day (Perceived Error Correction Rate). Delays occur

since the production process does not correct all errors generated. When a workforce assigned to error

corrections diverted is from production, bulk workforce allocated assigned is for quality assurance.

(Williams, D. 2003a, 2003b), (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde, A., 2016)

5.5 Error Detection and Rework Detection Rate

Errors remain potentially detectable and hidden until task reviewing and testing. During this phase,

some errors go undetected and corrected are through rework while some may remain undetected only at

the late stages. Error detection is a critical essence of quality assurance through activities such as

reviews, walk-through, code reading and inspection. QA therefore focuses its attention to error

detection. The backlog may initially be zero when all identified are errors.

The major problem with QA is the uncertainty underlying defining when the QA effort has been fully

successful and all errors have been detected, sent back for correction and should be finished because

61

some errors may slip undetected through the QA process. This is because errors may be active and

passive in nature.

Demonstrated in the production sub-system, motivation loss, communication and training overheads

influence the potential error detection rate. When staff are demotivated, and suffer communication

losses, more staff needed are to locate to errors than would be under normal circumstances. If

management at an early stage does not correct the problem, errors slip through the QA effort only to

detect them at the late stages of production. (S.C., Davar & M., Parti, 2013)

The number of staff required to detect an error may be determined by the error type, (Not included in the

model) work efficiency and the error density. A decrease in the number of staff allocated for QA leads

to decrease in detectable errors. The potential error detection rate is often lower than the actual one. As a

result, some errors may go undetected at the QA stage and end-up undetected at the next stage of

software production cycle or in the final product itself as active or passive errors.

The error detection rate has a significant effect on the number of errors detected. The higher the error

detection rate, the higher the number of detected errors. The error detection rate is a QA & REPI

function. The error detection rate is subject to the number of QA staff allocated to detect errors. The

higher the number of staff allocated to QA the higher the rate. Though this is a significant factor, over-

allocation of staff to QA may result to reduction in production staff that may lead to increased

production tasks per staff, initiates fatigue, loss of staff motivation and increase in the number of

detected errors. (Williams, D. 2003a, 2003b), (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde,

A., 2016)

5.6 Error Generation and Error Generation Rate

Several factors influence the error generation rate in the software development phase. A specified

estimation may represent the effect of varied organizations and projects. (Kamuni, S.K., 2015)

However, schedule pressure and a workforce mix, play a major dynamic role during the software

development phase.

Workforce fall in two major groups namely: newly hired and experienced workforce. Newly hired staff

deemed are less productive and error prone than experienced staff. Where the workforce consists of

more experienced staff, the error rates are almost at their nominal rate. Experienced staff avoid making

errors. New staff assumed are twice as accident prone than experienced ones. A mix of the two blends of

62

staff therefore influences the errors generated. If majority of staff are new the error generation rate

increases. (Zawedde, A. & Williams, D., 2014), (Zawedde, A., 2016) and (S.C. Davar & M., Parti,

2013)

A number of other factors influence the error generation rate. These include organizational factors such

as structured techniques, quality of staff and those of a particular project with variations from project to

project and remain invariant during a single project. The cumulative effects of such factors captured are

as real numbers of errors committed per task and computed as a product of the software development

rate and the number of errors committed per task. The error type generated varies over time depending

on the level of system development in the SDLC cycle. (Williams, D., 2003a, 2003b), (Zawedde, A.S.A.

et al., 2011), (Zawedde A. &Williams, D., 2013, 2014) and (Zawedde, A., 2016)

Schedule pressure bears a hand in errors generation. When schedule pressure is on the increase (+ve),

staff concentrate on their effort and put in more hours. However, exhaustion and stress increase the error

rate. When the production rate is higher, tasks tackled per hour consequently increase. This may

generate more errors per hour. (Williams, D., 2003a, 2003b), (Zawedde A.S.A., et al., 2011), (Zawedde,

A. & Williams D., 2013, 2014), (Zawedde, A., 2016), (Van Oorehot K., Langerak, F. & Ngupta, K.S.,

2011), (Putnam-Majarian, T. & Putman, D., 2015) and (Trecentis, 2018)

5.7 Software Error Densities

Error densities are because of the error detection during various stages of software development.

Increased error densities affect the allocation of staff to rework on errors. High error densities relate to

the quality of staff, their overall productivity, the injection of the quality assurance and testing functions.

Lack or late injection of QA and testing results into an increase in the error density. From earlier

discussions, a high introduction of new staff results into an increase in the error density. (Zawedde, A. &

Williams, D., 2013, 2014) and (Zawedde, A., 2016)

5.8 Workforce Productivity, Rework Rate and Workforce Needed

When the potential productivity is achieved staff, use resources to meet the tasks assigned. The peak

productivity can only be achieved when a staff or team of staff work at their peak efficiency. When

variables or factors such as loss of motivation and existence of faulty processes, the production rate

cannot achieve its full potential. Normal productivity measured by the amount of tasks they perform per

day and tied to a constant or fixed factor varies from project to project depending on the number of tasks

63

involved. (S.C., Davar & M., Parti, 2013), (Putnam-Majarian, T. & Putman, D. 2015) and (Solomon, B.,

Shahibuddin, S., & Ghai, 2009)

5.9 Effects of Staff Experience & Learning on the Overall Productivity

The model simulation graphs demonstrates that distinguishing productivity exist between the newly

hired and experienced workforce. Experienced staff carries a higher productivity and a larger output

potential than the later. The implications therefore are that the ratio between new and experienced staff

allocation to software production influences the potential productivity rate. Staff learning though with

delay, increases the potential staff productivity rate since the new staff learns to handle their assigned

tasks more efficiently. The learning curve therefore demonstrates that learning staff over time increase

their productivity since they become more familiar with the tasks required and improve their problem

solving skills. (Williams, D. 2003a, 2003b), (Zawedde, A. and Williams, D., 2013, 2014), (S.C., Davar

and M., Parti, 2013) and (Putnam-Majarian, T., Putman D., 2015)

Actual productivity on the other hand is the level of staff or team productivity attained when they work

at their optimal rate given the best possible use of their inherent resources. However, several variables

such as multiple losses due to either communication or motivation influence the realization of the

individual or team’s full potential productivity level. If eliminated, influencing variables that create

potential gaps in real environment situations and ideal situations are achieved then potential and actual

productivity would be equal. (S.C., Davar & M., Parti, 2013)

5.10 Effects of Communication on Staff Allocations and Production

Communication influences software production since individual staff and teams must communicate to

each other in order to progress well. Communication by nature in the project is an overhead. Time spent

in communication between individuals and teams lead to a decrease in the production rate. This results

to an overall drop in the team member’s nominative productivity.

Workforce per average error in a management function determines the number of errors that each team

member handles per day. Wrong decisions on the average number of errors staff can handle per day lead

to overworking, loss of motivation, increase in the number of errors, experienced staff quit rate, hiring

rate that have a ripple effect on staff productivity and schedule. (Williams, D. 2003a, 2003b), (Zawedde,

A. & Williams, D., 2013, 2014), (S.C. Davar & M., Parti, 2013), (Putnam-Majarian, T. & Putman, D.

2015) and (Zawedde A. (2016)

64

5.11 Software Bug fixing.

 Error fixing is a REPI and development function. After the QA, and testing, teams identified errors are

direct to production team for rework. Early error detection and fixing have significant effect on

production team productivity since the team have more time to concentrate on development other than

bug fixing. (Zawedde, & Williams, D., 2013, 2014), (Kabaale, E. Mayoka, K.G. & Mbarika, I., 2014),

(Putnam-Majarian, T., Putman, D., 2015)

5.12 Staff Motivation

Staff motivation link to personal feelings and observations and the goals they intend to achieve during

the software production processes. (Williams D., 2003a & 2003b), (Zawedde, A. & Williams, D., 2013,

2014), (Zawedde, et al. (2011), (Mohapatra, S. & Gupta, K., 2011), (Morrison B.J., 2012) & (Zawedde,

A., 2016)

Motivational factors such as salary, responsibility, and self-realization among others may be

characteristic in overall organizations climate. The factors may remain constant or change over time

during software production process. Slack time or breaks are an example of motivational mechanism

that changes over time in accordance with the schedule pressures. Time lost to non-project activities

such as tea breaks, telephone, email reading as well as time used for personal activities. Quantification

of slack time is losses in terms of person-hours. To achieve actual production the slack influence staff

not, pushing it away from the potential productivity. When productivity and falls behind schedule and

not achieved, the workforce, subjected to increased schedule pressure. Because of the increased

pressure, slack time reduce and concentration now shifts to tasks ahead. The workforce also tends to

increase their person-hours in order to recover the lost time within the schedule. The outcome for the

reaction which is for a limited period, the actual productivity increase as staff work harder and overtime

hours to close the lost time gap. At that particular reaction time, actual productivity may exceed the

potential productivity rate as this excluded overtime person-hours.

In limited time, positive effects realized in productivity is adversely affected as the above normal

reaction results into strain to the workers with the increased schedule pressure, overall since there is a

limit to overwork and exhaustion levels, the two variables limit the expected overall boost in

productivity. If there is a boost the overtime and increased labor intensity that fall within the limits, the

65

boost is possible to bring the project back to the schedule time. (Van Oorchat K. Langerak F. Ngupta,

K.S., (2011)

5.13 Effects of Workforce Exhaustion on Software Development

Workforce exhaustion due to schedule pressure and workload overtime have negative effect on staff

productivity, efficiency and overall REPI efforts. When the overtime and exhaustion levels are beyond

their limits, schedule time is re-adjusted. Due to exhaustion's realized during the period of increased

schedule pressure, a slack time is necessary for staff to regain and stabilize at normal pressure levels.

The slack work has a psychological healing factor hence staffs allowed breaks to remove tension of the

workload and enjoy themselves. Due to increased workload, pressure and lack of slack time, worker’s

willingness to tolerate further levels of increased work pressure lowers. This scenario tends to pose a

challenge to management as a misguided decision to these factors may eventually lead to an increased

quit rate and eventual loss of experienced staff. When staff is unwilling to overwork, putting extra man-

hours will have no effect and will be equal to zero.

In instances where opposite phenomenon occurs and the project is ahead of schedule and creates a

negative schedule pressure, there exists an equal threshold for under-work as for the overwork. In such a

situation, staff will tend to increase their slack time in order to fill their days. However, if this situation

persists for long, staff work overtime, loose motivation, and initiate a demand for the reduction of the

schedule with intention to create positive pressure. (Williams, D., 2003a & 2003b), (Pruyt E., 2010,

2013), (Paranali, K. Dhananjay, S., 2014), (Zawedde, A. & Williams, D., 2013, 2014)

5.14 Effects of Staff Experience on Productivity

The project workforce capacity has weighty effect on productivity, errors generated, rework and testing

rate. Experienced staff better detects errors, generate less errors, handle more tasks at a time, work under

pressure as well and effectively and efficiently rework on detected errors. If a project has high number

of new staff, productivity decrease, and schedule pressure may creep in. (S.C., Davar and M., Parti,

2013)

5.15 Determining of Project Staff Levels

A number of factors influence determination of the projects total workforce level. One of the major and

key factors is the current schedule completion date. (Van Oorchot, K., Langerak, F. and Ngupta, K.S.,

2011) In planning phase, management determines staff level to complete the project within schedule

66

time based on the perceived remaining tasks, evaluate and defines the workforce stability. Before new

hires, management determines and estimate the period when the new staff are required. It costs the

project additional time and resources to hire a new staff because of overheads for training and

assimilation before operations resumes normal peak efficiency. From the human resource management

point of view, workforce level needed does not automatically translate into the hiring goal.

The projects ability to absorb new staff is pegged on the rate at which the hired workforce is assimilated

and the training resource that is offered by the experienced workforce that are now assigned to training

new recruits. A ceiling on new hires (“Max New Hire”) as expressed in the model is equal to

“Experienced Workforce” multiplied by the number of “New Workforce”. A full time staff is expected

to train effectively, i.e. (New Workforce*Experienced Workforce). Management has to determine the

effectiveness of new hires to the project versus the loss in efficiency of their experienced workforce plus

loss of workforce stability. These factors affect management decision on the determination of “Sort

Workforce”, Schedule completion (“ScheduledCompletionDate”, work force stability and training

needs. The “Sort Workforce” and the “TotalWorkForceNumber” then expresses the desired and actual

workforce level. If the gap between the two, member will be hired or fired so that to equalize the

difference. (Williams, D., 2003a, 2003b), (Pruyt, E., 2010, 2013), (Paranali, K. Dhananjay, S., 2014),

(Zawedde, A. & Williams, D., 2013, 2014)

5.16 Effects of Turn-Over/Quit-Rate & Schedule on Projects

Staff turnover and expresses itself as the quit-rate of the experienced workers before project completion

time. There are fluctuations in the over-all quit rate and replacement must be sort through hire. The new

hires require training and assimilation into the project and if poorly managed, this may result into a

significant delay. (William, D., 2003a & 2003b), (D., Bator, 2014), (Zawedde A. and D., Williams,

2013, 2014), (Zawedde, A. (2016)

5.17 Product Quality Assurance, Continuous Testing and Error Rework

Workforce productivity at all stages of software development determine software quality assurance

(QA) and REPI success. When production team are efficient and effective, fewer errors generated are,

errors await reworking decreased, while product-testing process is more effective. Increased levels of

team’s communication and effectiveness management decisions on resources allocations boost product

quality assurance. REPI and quality assurance is effective where effective policy and feedback

67

mechanism are established and validation and quality analysis applied to all phases of software

development. The analysis re-evaluates the effectiveness in the REPI process. The overall goal is

effectively & efficiently carry out all requirements inspection. (Svahnberg, M.T., et al., 2010), (IEEE,

2014), (Zawedde A., 2016)

5.18 Cost of Errors in Projects

The RE pr0cess improvement and the quality assurance policy has significant impact on projects total

cost. At low levels of QA, expenditure increase due to high cost injected into the testing phase as errors

go undetected and slip through. Excessive REPI and QA expenditures result into increased cost.

Increased errors demand that more staff be allocated to error detection and rework tasks, slowing down

development, increased schedule pressure, loss of staff motivation, increased turn-over and increased

demand for new hires that have implications of costs of training and assimilation. (Williams D. 2003a,

2003b), (Zawedde A.S.A., et al., 2011), (Zawedde A. and D. Williams, 2013, 2014), (Pruyt, E., 2010,

2013) & (Zawedde A., 2016)

5.2 Software Project Sub-systems and Sub-sectors

a) Planning Sub-System

Planning activity represents the initial stage for any software project. Before production and control

launch, project size, scope, budgets are set discussed. Planning try to establish reasonable project

completion date (man-days required estimates) and the initial workforce required. Management plays a

key role on project development by determining the working hours per day, total workforce size

required, and set projects completion date in advance. This implies that planning cut-across several other

factors represented in human resource and project schedule planning in the planning subsystem. (IEEE,

2016, p. 1-73), (Zawedde, A., 2016, p. 109), and (IEEE, 2017).

 Planning Subsystem/Sub-Sector Reinforcing Loop (R1): The initial step of any project-planning

phase is to formulate and set a project completion schedule (Scheduled Completion Date). When the

projects Scheduled Completion Date increases, Time Remaining increases, decreasing the Work Force

Level Needed to complete project and the Sought workforce (Human resource management system) and

decrease the Total workforce Level (Human resource management) hence a reducing new staff hire rate.

Decrease in Total workforce Level required provides reduces the Cumulative Expected Man day

(Workforce allocation) and increase in project Man-Day Remaining (Control) and effects the Scheduled

68

Completion Date. The loop terminates when an increase in Man-Day Remaining leads a need to increase

the Scheduled Completion Date. (Lech, P. (2013) and Kamuni, S.K., (2015).

Planning Subsystem/Sub-Sector Balancing Loop (B1): The loop is concerned with the Man-Day

remaining and workforce Level Needed. An increase in Indicated work-force, increases in the workforce

Level Needed, Sought workforce and the Total workforce Level. An increase in the Total workforce

level, decreases the Cumulative Expected Man day, Man-Day Remaining and the Indicated Workforce.

The Man-Day Remaining closes the loop. . (Lech, P., (2013), and (Williams, D., 2003a, &2003b)

b) Controlling Sub-System

The controlling process in software development project encompasses three major elements. These

include measurement of elements to be controlled, evaluating significant activities, variables controlled,

and monitoring deviation of the system from the expected standards. The third element communication,

reporting measurements and behavior of system development altered are to shift to expected standards.

(Zawedde A. and D., Williams, 2013, 2014), (Zawedde, A., 2016)

The number of resources consumed, tasks completed or both measures project progress. Such

measurements are used to calculate man-days still required to complete the project on time. In the

process of this establishment, effects of production time, development quality and REPI and QA tasks to

rework errors and system testing in comparison with the actual man-days remaining before project end

time/deadline are observed.

The existence of remaining man-days in comparison to the actual man-days leads to conclusion that the

project is behind schedule. This information is forwarded to management to enable them make decision

to motivate their workforce urging staff to raise their energy to bring the project back on timetable.

Other tactics may apply to extend the project schedule.

The key major challenge to management is how to measure progress for software management due to

dynamic relationship between workforce size and software production. (Adbel-Hamid, 1991 pp. 117-

119), (Pandey, D. & Ramani, 2009), (McLeod, Laurie, Stephene G. & MacDonnell, 2011), (Morrison

B.J., 2012), (S.C., Davar and M., Parti, 2013) & (Zawedde, A., 2016)

69

Controlling Sub-System Reinforcing Loop (R1): The first reinforcing loop in the Controlling Sub-system

focus on cumulative tasks developed, error detection man-days perceived needed and the schedule

pressure.

An increase in the Cumulative Developed Tasks leads to a higher Percentage of Actual Work Done

pushing the software development from design to coding phase. This increase Detected Errors for

Reworking and Manpower Required to Rework on Detected Errors, increase Remaining Man-days

leading, Schedule Pressure, and slack time prompting staff to boost their production effort which boost,

software development. The loop closes when Cumulative Developed Tasks increase with an increase

with Software Developed. (D. Bator, (2014), (Cuellar M., 2011), (McLeod, Laurie, Stephene, G. &

MacDonnell, 2011), (Barbara Gladysz, et al., 2015) and (Zawedde, A. 2016)

Controlling Sub-System Reinforcing Loop (R2): The second reinforcing loop identify the relationship

between developed and new discovered tasks. The loop tries to explain the problem where management

makes underestimations in their decision. As the existing and new staffs improves their experience with

improved productivity, error detection, resolving skills, and the Cumulative Developed Tasks increase,

enabling management unveil more New Discovered Tasks. The New Discovered Tasks lead to New

Tasks Thought Still Remaining with a time delay, increase in demand for Man-days Required Working

on New Tasks, increased Remaining Man-days and schedule pressure. An increase in the Schedule

Pressure leads to increased Software Developed. The loop closes when Cumulative Developed Tasks

increase. (Mohapatra, S. and Gupta, K., 2012) (Williams, D., 2003a, 2003b), (McLeod, Laurie, Stephene

G. & MacDonnell, 2011), (Zawedde, A., 2016)

Controlling Sub-System Reinforcing Loop (R3): The third reinforcing loop in the controlling subsector

is concerned and linked to Cumulative Developed Tasks, Perceived Productivity, and Total Job Size (

Man-days), Remaining Man-days and Schedule Pressure.

Like in the discuses above loop (B3), management translates an increase to Cumulative Developed

Tasks to eventual increase in Cumulative Developed Tasks, Perceived Productivity. Increase in

Perceived Productivity translated to a decrease in Man-days Increase Due to New Discovered Tasks. A

reduction in a reduction in the workforce required to work on new discoveries (Man-days Increase Due

to New Discovered Tasks) lead to a decrease in Total Job Size in Man-days. The drop causes a decrease

in Remaining Man-days that increase the Schedule pressure as the project proceeds to its stop time. In

70

Response to reduced schedule pressure, staff requested are or forced to work hard to bring the project

back to schedule. The effects of decrease in schedule pressure here is a boot to software development

(but only for a short time), eventually Cumulative Developed Tasks levels increase and the loop close

here.

 Controlling Sub-System Reinforcing Loop (R4): The fourth reinforcing loop is concerned with the links

between software to the total man-days needed for the newly discovered tasks, the total job size and the

total workforce level.

When Cumulative Developed Tasks increases, Perceived Productivity increase as well leading to

decrease in Man-days Increase Due to New Discovered Tasks. With reduced number of Man-days

Increase Due to New Discovered Tasks, the Total Job Size in Man-days decrease as well which

translates to a decrease in Remaining Man-days. A decrease in Remaining Man-days causes a decline in

workforce Level required as the project move towards completion. With reduced workforce Level

required, management decided to reduce the Total workforce Level that decrease the Cumulative

Expected Man-days and negatively affects the Perceived Productivity. The loop closes. (Williams, D.

2003a, 2003b), (Putma-Majarian, T. & Putman, D., 2015), (S.C., Davar & M. Parti, 2013), (Zawedde,

A.S.A. et al. 2011), (Zawedde, A., 2016)

Controlling Sub-System Balancing Loop (B1): The first balancing loop identifies the relationships

between discovered tasks, increase in development man-days and the total job size (man-days). As

Cumulative Developed Tasks increase, New Tasks Thought Still Remaining also increase as more tasks

are unveiled and increase in Man-days Increase Due to New Discovered Tasks. As a control measure by

management to reverse the trend of increased Man-days and Increase Due to New Discovered Tasks,

that has the effect of decreasing remaining Man-days. A decrease in Remaining Man-days leads to a

decrease in Schedule, Software Developed and subsequently a decline in the Cumulative Developed

Tasks when the loop eventually closes. (Zawedde, A., 2016), D.W., Williams, (2003), (S. C., Davar and

M., Parti, 2013)

Controlling Sub-System Balancing Loop (B2): The second balancing loop in the Controlling system

focus on the relationship between Cumulative Developed Tasks, perceived tasks remaining, total

person-days perceived still needed and schedule pressure. When Cumulative Developed Tasks

71

increases, New Tasks Thought Still Remaining decreases. With less New Tasks Thought Still

Remaining, Man-days Required to Work on New Tasks decrease as well and results to a decrease in the

perceived Remaining Man-days. This reduces the tension causing a decrease in the Schedule Pressure

and Software Developed that eventually results into a decrease in the Cumulative Developed Tasks

when the loop closes. (Williams, D., 2003a, 2003b), (Zawedde A. & Williams, D., 2013 & 2014), and

(Morrison, B. J., 2012)

Controlling Sub-System Balancing Loop (B3): The third balancing loop concerns itself with the

perceived software development productivity. This is an important variable for controlling. Linked to

the Perceived Productivity are variables; Man-days Required to Work on New Tasks, Remaining Man-

days, Schedule Pressure and the software developed and Cumulative Developed Tasks. (Zawedde, et al.,

2013, 2014)

When Cumulative Developed Tasks increases, the Perceived Productivity increase as well. For this

reason, the main concern link to the relationship between cumulative tasks and Productivity. As project

move from design to coding phase in software development, the number of tasks accomplished increase

fast. Increasing staff experience and on job, learning contributes to this increase. The experienced and

well-versed staff can carry out tasks and coding fast and efficiently. This is the management view that

when Cumulative Developed Tasks, Perceived Productivity increase as well (Abdel-Hamid, 1991:

pp.117-120), (S.C. Davar and M. Parti, 2013) & (Morrison, B. J., 2012)

The perceptions that increase in Cumulative Developed Tasks lead to eventual increase in Perceived

Productivity and decrease the Man-days Required to Work on New Tasks. As Man-days Required to

Work on New Tasks decrease also decrease Remaining Man-days follow suit. A decrease in Remaining

Man-days provides for a decreased Schedule Pressure provide for a decline in both the Schedule

Pressure and Cumulative Developed Tasks where the loop is closed.

Controlling Sub-System balancing Loop (B4): The fourth balancing loop is linked with the cumulative

man-days (Cumulative Expected Man-days) expended with the remaining man-days (Remaining Man-

days) for the project. An increase in the Cumulative Expected Man-days leads to a decrease in the

Remaining man-days. With this decrease management have to re-calculate the workforce levels required

by reducing the workforce Level Required. A reduction in the workforce level required translates to a

72

decrease in Total workforce Level. A decrease in Total workforce Level eventually translates into a

decrease in Cumulative Expected Man-days decreasing. The loop is closes at that point. (Zawedde, A.,

2016), (Williams, D. 2003a, 2003b), (Putman–Majarian, T. & Putman, D., 2015), (S.C. Davar & M.

Parti, 2013), (Zawedde, A.S.A. et al. (2011), (Zawedde A., 2016)

Controlling Sub-System Balancing Loop (B5): The last and final balancing loop in the controlling Sub-

System links software development to the person-days perceived still required for testing and schedule

pressure. The loop efforts in the testing phase control. An increase in Software Developed translates into

an increase in Cumulative Tested Tasks when more tasks go to testing. An increase in the Cumulative

Tested Tasks, decrease the volume of Tasks Remaining to be tested. This observed decrease lead to

ManDaysStill Required for Testing reducing the Remaining man-days still required. A reduction in

perceived Remaining man-days leads to decrease in Schedule Pressure. The loop close when slack times

increase which results to less Software Developed. (Zawedde, A., & William, D., 2013, 2014)

c) Software Production Sub-System

Software production activities involve system design and coding, quality assurance (QA), error rework

and system testing The subsystem has been broken down and mimic the base model by Abdel-Hamid,

1991, p.69) subsectors i.e. work force allocation, software development productivity, quality assurance

and rework and the system testing. (Zawedde, et al., 2011), (Zawedde, A. & Williams D., 2013, 2014),

(Zawedde, A., 2016)

Workforce allocation done is on to three different efforts in software development namely software

development, quality assurance (QA), error rework and system product testing.

Management undertakes the role of planning and resources allocation as per the processes involved.

The development team initiates processes by designing and coding the software then send it to the

Quality Assurance and Rework team. Quality assurance effort goes hand in hand with the production.

The software is subject to quality testing methods and techniques such as code reading and testing,

walkthroughs, reviews, inspection and integration testing. Rework team receive any identified errors are

sent to the rework team. Staff allocation is dependent on the number of errors identified. (Williams D.,

2003a & 2003b) (D.W., Williams, 2013) (Zawedde, A. & Williams, D., 2013, 2014) and (Zawedde,

A.S.A. et al., 2011)

73

 Testing is a quality check function to ascertain all tasks are fully developed. Testing team receive

rework errors for scrutiny while some may be allocated back to the production team. At the onset of the

project, as the development proceeds, some staffs shifted to testing and quality assurance teams. In the

end, the entire team ends-up to in the testing section. The model represented in the chapter four

demonstrate man-power allocation with feedback on their progress giving its present status report and

man-power allocated.

d) Manpower Allocation Subsystem/Subsector

The work force allocation sub-sector in chapter 4 demonstrates how management allocates different

resources between production, QA, Controlling and testing sub-sectors, (Zawedde, A. & D. Williams

2013, 2014) and (Zawedde, A., 2016)

Man-power Allocation Subsystem Balancing Loop (B1): The first balancing loop identified the

central role of management in the project work force allocation. Manpower distribution is between

production, rework and quality assurance with focus on processes undertaken and schedule pressure

levels.

An increase staff allocating to QA, decrease production man-power leaving fewer workforce for

production and testing resulting to a general reduction in software development productivity. When

productivity decreases, percentage of the actual work done decreases (Control). An increase in required

rework effort on the average error results to a decrease in the error rework in the QA assurance and

rework subsectors. A decrease in the error rework causes an increase in the errors waiting for rework in

the QA and Control sub-sectors. With an observed increase in the number of errors waiting rework,

management has to undertake a decision (Control) to focus on the appropriated increase the numbers of

person-days they think is still required to carry out the error rework duties on the already increased

rework detected errors. An upward trend decision to increase work force is undertaken. (Williams D.

2003a & 2003b), (Morrison, B.J. 2012), (Zawedde, A. & D. Williams, 2013, 2014), (Zawedde, A.,

2016)

 An increase in the number of rework work force creases an increase in the schedule pressure (Control).

The loop closes when work force allocation to QA decreases because of an increased schedule pressure.

 In resource allocations allocates efforts to software development, QA and rework of the resources

during the first phase of software development. As demonstrated in the figure above (simulation graph)

74

one of the major challenges faced with project management is to set the allocation ratios to utilize work

force more efficiently. (Abdel-Hamid, 1991, pp. 69-75) and (Zawedde, A., 2016)

Man-power Allocation Subsystem Reinforcing Loop (R1): The first reinforcing loop in the work force

allocation subsector demonstrates the relationship between QA manpower allocations the rework team

allocation, rework effort and process and schedule pressure. As demonstrated in the simulation graph

above, when more manpower is allocated to QA less manpower will be available for rework effort.

Interchangeably, when less manpower is allocated to rework, more manpower will be available for

development and testing. This trend follows the same trend as for the B1 effort. (Zawedde, A. &

Williams, D., 2013 & 2014), (Zawedde, A., 2016)

Allocation of more workforce or development, results to high software development. The more software

developed the higher percentage of actual work done. As the project shifts from design to coding, more

workforce is required to rework when average error level decreases. In the design, errors are much more

difficult to detect and rework on. The implications are that the average work force required to rework

design errors is greater than that needed to rework code errors. Indicated in the simulation there is a

negative relationship between the percentages of work done and work force required reworking on

average errors. (Damian, D., & Chisan, J. 2006) and (Daneva, M., 2016)

Allocation of more workforce to for QA, percentage of work increases. When the Detected Error

Rework Rate, Rework-Manpower per Average, Detected-Error-Reworking Rate increase. This has a

negative effect on the number of the Perceived-workforce-man-day-Shortage and Total-workforce-Still-

Needed. Reworked on errors decrease errors awaiting rework and the Workforce perceived still needed.

The decrease in schedule pressure reacts to these changes. The loop closes when work force for quality

assurance increase because of an increase to the schedule pressure. (S. C. Davar & M. Parti, 2013),

(Tricentis, 2018), (Zawedde, A. & D. Williams, 2013, 2014) and (Zawedde, A., 2016)

Man-power Allocation Subsystem Balancing Loop (B2): The second balancing loop of the man-power

allocation subsystem is related to the relationship between manpower for quality assurance, allocation of

manpower for rework, manpower allocation for error detection and process and schedule pressure.

When management make a decision to increase manpower for quality assurance, man-power available

for rework decrease accordingly. Rework effort work force is drawn from the production team hence

75

when production increase, rework allocation decrease hence a negative relationship between the two

variables. A reduction in the rework work force lead an increase in the number (Williams, D., 2003a,

2003b), (Zawedde, A., 2016) of staff allocated to production and testing teams. An increase of work

force allocated to production subsequently lead to an increase at the rate of software development. An

increase in software development increases the percentage of actual work done which has an effect to

the quality of product produced. The realized increase in the percentage of work done as a negative

effect on the number of staff required to detect average error. However, the number of detected errors

increases due to improved efficiency. An increase errors increases errors waiting reworking. The

increase in the number of errors awaiting rework brings in need to increase the number of mandays to

rework of the errors. This signals an increase in the number of perceived person-days still required for

project completion. The loop close when an increase in schedule pressure causes a decrease in

manpower allocated for quality assurance. (Zawedde, A. & D. Williams, 2013, 2014), (Zawedde, A.,

2016) (Kamuni, S. K., 2015),

Man-power Allocation Subsystem/Subsector Reinforcing Loop (R2): The reinforcing loop have the

same influence as the balancing loop B2. However, the link relates the relationship between work force

allocation for quality assurance, software production, error detection and the schedule pressure.

Allocation of workforce to quality assurance effort implies that there will be less staff available for

software production and testing. A low allocation of staff to production leads to a decrease in software

development that have a direct effect on the percentage of work actually done. When the later happen

the quality assurance work force required to detect the average errors increases. The effect also leads to

a sharp decline on the amount of errors detected and the detected errors awaiting rework. A decline in

the amounts of errors wait for rework results into a decline in the number of work force perceived still

required for rework and the total mandays perceived still required. Because of these dynamic, schedule

pressure reduces. The loop closes when more workforce allocated are to the quality assurance effort.

(Zawedde, A. & Williams, D. 2014) & (Zawedde, A., 2016)

e) Software Development Productivity Sub-Sector

The subsector and subsystem shown in chapter 4 focus on the development phase. In this phase

management have a duty to conceive and make predictions the rate at which software need to be

76

developed. Multiple factors affect the rate of software productivity alongside work force allocation.

(IEEE, 2017), (Zawedde, A. and D. Williams, 2013, 2014) & (Zawedde, A. 2016)

The productivity subsector evaluates the project workforce overall productivity affected by factors such

as workloads and overtime, motivational factors, well as schedule pressure. Workforce productivity may

be sub-divided into two; potential and actual productivity. Potential productivity minus all faults due to

faulty processes expressed are as actual staff productivity (Abdel-Hamid, 1991: pp.77-94). The faulty

interrupting considerations include training and communication overheads, personal and team

motivation and schedule pressure. (S.C. Davar and M. Parti, 2013), (Morrison, B.J., 2012), (S. C. Davar,

M. Parti, 2013) & (Putnam-Majarian T. & Putman, D., 2015)

Software Development Productivity Sub-Sector Balancing Loop (B1): The loop considers the amount of

software Developed-P, influences of remaining tasks, and the perceived Workforce Man-Day Shortage

for efficient software production. Software developed influence the percentage of the total software

development tasks done (Percentage of Actual Work Done-p). The percentage of actual work done

determines and reduces the Perceived Work-Force Man-days Shortage (Control) as per the schedule

pressure. Manday Absorbed reacts in a positive relationship with the Perceived WorkForce ManDay

Shortage. If no shortage exists, no increase in the mandays needed to absorb the shortage. The tasks

allocation to software development is dependent on the Perceived WorkForce manday Shortage. If no

shortage exists, the project schedule is on course hence little or no adjustments are to the rate of

development. If a shortage exists, to close the existing/possible gap, an upwards boost to the production

per staff (Needed Boost for Software Development) is necessary. (Daneva, M., 2016), & (Gloria, P. et

al., 2014)

The Actual manday on Project depends on how the workforce efficiently work and spend their time on

the project. In real life, environment staff can never work to their maximum productivity and efficiency

because some time which does not positively contribute to software production. Staff go for tea and

lunch breaks or take to times perform their personal activities such as calling, check on emails or take

offs. The slack time affects the overall staff productivity since, it calculated in lost man-hours and

affects production man-hours. (IEEE, 2017), (Mohapatra, S. & Gupta, K., 2011) & (Gorschek, T. and

David, A. M., 2007)

77

To cover for the lost time, management result into increasing pressure on staff by cutting the time slack

to boost software development to desired levels. A cut on the workforce slack time and a subsequent

increase in the man-hours tend to increase the development levels (Increased Productivity) to bring the

project within the schedule frame. However, the increase is only for a short time before fatigues and loss

of motivation sets in. (S.C. Davar & M. Parti, 2013), (Kabaale, E. Mayoka, K.G. and Mbariaka, I.,

2014)

A positive relationship emerges between software development and the slack time. When development

decreases slack time increase by decreasing the actual man-day spent on development (Actual man-day

Fraction on Project) and vice versa. The loop (B1) closes when software development decreases and the

percentages of actual work done (Percentage of Actual Work Done-P) respectively decrease. (Mijiwaart,

R., 2012), (Lech, P., 2013), (Kamuni, S.K., 2015) & (Zawedde, A., 2016)

 Software Development Productivity Subsector Balancing Loop (B2): The loop focus on the

relationship between software development, development workforce allocation and schedule pressure. If

the percentage of job done increase, due to increased software development, the Total Workforce

Perceived Still Needed-P and schedule pressure (Control) and the workforce allocated are for production

due to a reduction in required effort decrease. Less allocation of workforce to production eventually lead

to a decrease in the software developed and the percentage of actual work done (Percentage of Actual

Work Done-P) and the loop closes at that point. (Cuella, M., 2011), (Zawedde, A.S.A et al., 2011)

Zawedde, A. (2016) and (Barbara Gladysz, et al., 2015)

 Software Development Productivity Subsector Balancing Loop (B3): The loop as shown in the

software development productivity sub-sector causal loop, concern itself with pressure at work and on

actual man-day fraction on the project (Actual Man-day Fraction on Project).

When maximum, workable man-day shortage (Max Workable Man-day Shortage) decreases, the Man-

day absorbed increase. The effects of slack time earlier discussed. If the project is running late, workers

work hard to catch-up with the lost time and increasing the man-day absorbed to boosts the desired

software development rate and fraction of man-days spent on work. Seen in my earlier discussion, this

boost in software development productivity is short term after which it produces negative results

thereafter. (Mohapatra, S. and Gupta, K., 2011) (Kamuni, S.K. 2015), (Putnam-Majarian, T. & Putman

D., 2015)

78

Work pressure increase management as a response to rising schedule pressure and affects workforce

total productivity (S.C. Davar and M. Patri, 2013), (Zawedde, A., 2016). Due to the existence of

workload and exhaustion thresholds, that limits further boost in the Actual man-day Fraction on Project.

The scenario is only possible when overtime increase labor intensities and the Max Workable man-day

Shortage are within limits. Due to the limits, the Actual man-day Fraction on Project increase staff

exhaustion levels. Exhaustion leads to negative effects on productivity. (S.C. Davar & M. Parti, (2013),

Zawedde, A. et al., 2013, 2014) and (D. Bator, 2014)

Software Development Productivity Subsector Balancing Loop (B4): The loop shown in the

software development productivity sub-sector, (See chapter 4) staff willingness to work overtime and

the exhaustion levels, when the project is behind schedule, decision to increase the number of man-day

Absorbed discussed earlier creates pressure that increase Staff Exhaustion Levels, decrease staff

willingness to work overtime and decrease the Max Workable man-day Shortage. The loop is closed as

the man-day Absorbed decrease. (Williams D. 2000, 2003a & 2003b) (Mohapatra, S. & Gupta, K.

2011), (Van Oorchat, K., langerak, F. & Ngupta, S.K., 2011) (Zawedde, A.S.A et al., 2011), (Morrison,

B.J., 2012), (Zawedde, A. & Wiliams, D., 2013 & 2014) (Kamuni, S.K., 2015) and (Zawedde, A., 2016)

Quality Assurance and Rework Subsystem

Achievement of software quality fall in collaboration with the software production processes. As

production proceeds, errors occur because the process involves human interaction bound to generate

errors in the design, and coding or errors that generate from poor RE and REPI specifications. The

finished software undergo testing to ascertain that functional and non-functional standards has been

captured, achieved to meet the client and developer’s satisfaction. Reinforcing (R1, R2 & R3) and

balancing loops (B1, B2, B3 and B4) represents the Quality Assurance (QA) subsector.

QA and Rework Sector Balancing Loop (B1): The first balancing loop in this sector (See Chapter 4)

concerns itself with software development progress, rework effort and process.

When software production increases, percentage of actual work done also increase. As project

development, progress from system design to coding a reduction in Rework Manpower Needed per

Average Error is evident. Increase in reworked errors (Rework) decreases errors waiting reworking

(Detected Errors Waiting for Rework), schedule pressure, effort to carry out tasks and the daily man-day

required for software development (Daily Manpower for Software Development). The loop terminates

79

when Daily Manpower for Software Development leads to less software developed. (Nurmulian, N.,

Zowghi, D., & Fowell, S., 2004)

QA and Re-work Sector Balancing Loop (B2): The second balancing loop is concerned with the

allocation of workforce to the QA effort and subsequent effects on the daily manpower to the rework

Process. (See Figure 4.23)

Expounded in the previous loops, increase development leads to increase in percentage of work done.

As development moves from design to coding, the process provides passive errors more that are easily

detectable, hence decreasing the workforce allocated quality assurance. Response to this decrease, there

will be less Daily ManPower Allocated for Reworks still required which in turn lead to an increase to

the resources available for the rework process. When Daily Man-Power Allocated for Rework is low, an

increase observed is in the re-work duties. The increase rework duties results into decrease in Detected

Errors Waiting for Rework, schedule pressure and the Daily Manpower for Software Development. The

loop closed when Daily Manpower for Software Development decrease. (Zawedde A. & D. Williams,

2013, 2014) and (Zawedde, A., 2016)

QA and Rework Sector Balancing Loop (B3): The third balancing loop of the QA and rework system

(Figure: 4.29) puts down the mechanism behind manpower allocation for QA and the potential to detect

errors.

Discussed earlier in previous loops, an increase in software developed lead to an increase in the

percentage of actual work done. As software development shifts from design toward coding phase, an

increase in the Percentage of Actual Work Done decreases the Daily Manpower Allocated for QA

translating into a decrease in the Potential Detectable Errors and Detected Errors Waiting for Rework,

schedule pressure and Daily ManPower for Software Development as well. Less Daily ManPower for

Software Development eventually translates into less Software Developed where the loop is closed. The

loop demonstrates that lower QA effort eventually lead to increase in undetected errors. (Williams D.,

2003a, 2003b) & (Zawedde, A. 2016) & (Zawedde, A.S.A. et al., 2011)

QA and Rework Sector Balancing Loop (B4): The fourth and final balancing loop in the quality

assurance (QA) and rework subsystem demonstrates a relationship between the Percentage of Actual

Work Done and Error Generation. When software developed increases, so is Percentage of Actual Work

80

Done. As system, development shifts from design to coding phase, Error Generation a decrease. Since

coding tasks are easier to accomplish, avoid, and detect possible errors than in design phase, lower Error

Generation leads to less Potential Detectable Errors. This in turn results into a decrease in Detected

Errors Waiting for Rework and Schedule Pressure. A decrease in the Schedule Pressure leads to a

decrease in Daily Manpower for Software Development and effort. (Williams D., (2003a, 2003b) Loop

close as Daily Manpower for Software Development results to a reduction in Software Developed.

(Sterman, C. D. 2003), (J. Sterman, 2000), (S.C. Davar & M. Parti, 2013), (Sterman J.D., Oliva R.,

Linderman, K. & Bendoly, E., 2015), (William D., 2003a, 2003b) and (Zawedde, A., (2016)

QA and Rework Sector Reinforcing Loop (R1): The first reinforcing loop is concerned with progress

of software development, the QA effort and process. An increase in software development results into

an increase the Percentage of Actual Work Done. As development move from the design to coding

stage, the quality assurance work force is required to detect errors, decreasing the QA Manpower

Needed for AveverageError Detection depending on the type of errors, staff experience level and

assimilation delay. Easy errors to detect require a lower level of QA Manpower Needed for

AveverageError Detection than would be with hard errors to detect. When amounts of errors waiting to

be reworked (Detected Errors Waiting for Rework) increase, schedule pressure increase increasing the

effort required to carry out tasks and Daily Manpower for Software Development. The loop close this

lever the effects of Daily Manpower for Software Development results into an increase in software

developed. (Morrison, B, J., 2012)

QA and Rework Sector Reinforcing Loop (R2): The second reinforcing loop in the Quality Assurance

and Rework Sub-sector is concerned with software development progress; the errors rework effort and

process as well as the overall work force allocation to rework activities. The rationale in the loop is that

when software development increases, the overall Percentage of Actual Work Done. As the project

progresses from design to coding, rework of coding errors becomes easier than design errors.

QA and Rework Sector Reinforcing Loop (R3): The third reinforcing loop in the quality assurance

(QA) and rework subsystem efforts on the relationship between software production and error

generation.

81

The loop reveals that an increase in software development lead to an increase in error generation.

Potential Detectable Errors, Detected Errors Waiting for Rework and schedule pressure. Schedule

pressure increase increases the Daily Manpower for Software Development. The loop closes as software

development increases. (Williams D. 2003a, 2003b), (S.C., Davar & M. Parti, 2013), (Zawedde, A.S.A.

et al., 2011) and (Zawedde, A. 2016)

f) The System Testing Sub-system

The system-testing subsector is the final sector of the software production cycle (figure: 4.8, 4.12). If

errors escape the QA effort and go detected, they tend to remain in the software product until the testing

phase. Earlier mentioned in the paper, errors may be passive or active in nature. The two type of errors

influence the testing phase. The main effort of the testing team is to first if possible to capture the active

errors and later search for the passive errors. The figure below demonstrates the testing subsector causal

loop diagram (Solomon, B. Shahibuddin S. & Ghai, A., 2009), (Kabaale, E. Mayoka, K. G., & Mbarika,

I., 2014). (IEEE, 2013, p.1-68), (IEEE, 2014), (IEEE, 2015, p. 1-149), (IEEE, 2017) and (Kamuni, S. K.,

2015)

System Testing Sub-system Reinforcing Loop (R1): When the undetected errors arrive from the from

QA, Active Error Density and rework effort increases. An increase in the Active Error Density leads to a

subsequent increase in the Active Error Generation Rate, which leads to increase in Undetected Active

Errors from QA and Rework process and closes the loop. (Williams, D. 2003a, and 2003b), (Kartika

Rai, Lokesh Madan & Kislay Anand, 2014)

System Testing Sub-system Balancing Loop (B1): The loop concentrates on the process of active

error detection. When the Undetected Active Errors from QA and Rework effort increases, likewise the

Active Error Density increases. If the number of errors of Active Error Density increases, likelihood is

that, the Detection of Active Errors increases accordingly. An increase in Detection of Active Errors

eventually reduces the volumes of Undetected Active Errors from QA, Rework, and the loop close.

(Joosen, D. Basten, D. & Mellis, W., 2011)

System Testing Sub-system Balancing Loop (B2): The second balancing loop concerns the detection

of passive errors just like the loop B1 than deal with active errors. The number of active errors increase

sporadically for a while and become passive errors after a while generation of errors. (Joosen, D. Basten

D., & Mellis, W., (2011), (Williams, D., (2003a, 2003b). Increase in the number of Undetected Passive

82

Errors from QA and Rework leads to an increase in Passive Error Density. An increase in Passive Error

Density triggers the increase in Detection of Passive Errors. This loop closes when Detection of Passive

Errors decreases the Undetected Passive Errors from QA and Rework process. (Jones, C. & Bonsignour,

O., (2012)

System Testing Sub-system Reinforcing Loop (R3): The third reinforcing loop is concerned with the

Passive Error Density and the System Testing process. When Undetected Passive Errors from QA and

Rework are fending into the system and the Active Error Density retires the Passive Error Density

increase as well. This increase in Passive Error Density leads to higher demand for the Testing

WorkForce per Task that eventually slows down System Testing process because detected errors are

fewer. This loop close when quality assurance and rework process increase due to a higher Passive Error

Density and less system testing, is undertaking. (Zawedde, A.S.A. et al., 2011), (Zawedde, A., 2016),

(Williams, D., 2003a, 2003b), (Zawedde A., & Williams, D., 2013 & 2014)

System Testing Sub-system Reinforcing Loop (R4): The last and final reinforcing loop (See Figure:

4.8, 4.12) is concerned with the detection of passive and Active errors in the subsector and system. (See

figure 4.20, 4.28). When active errors go undetected to the testing phase from the Undetected Active

Errors, QA and Rework rate of undetected errors increase. With a delay, active errors are retired and

become passive instead increasing the Passive Error Density. Likewise, Testing WorkForce per Task

increase leading to less System Testing and more active errors slipping into the system (Tricentis,

(2018). As Detection of Active Errors increase, Undetected Active Errors From QA and Rework

increase as the loop close. (Zawedde A., and Williams, D., (2013, 2014), (IEEE, 2013, 2014) & (Gloria,

P. et al., (2014)

Human Resource Management Subsystem/Sub-Sector

This subsystem manages and controls the hiring and management of the total work force (S.C., Davar &

M. Parti, 2013), (Zawedde A. & D., Williams, 2013, 2014), (Gloria, P. et al., 2014) and (Zawedde, A.,

2016),

HRM Subsystem Balancing Loop (B1): Causal loop diagram focus on the project workforce hire.

Management hires new people into the project to fill available vacancies. The hiring exercise increases

the workforce. The newly hired staff are trained and assimilated into the project with delay due to

trainings that the new staff under go before they are qualified to be considered for assimilation. After

83

training and gaining experience S.C., Davar and M. Parti, (2013), the new staffs gain experience to

undertake tasks as experienced staff. Increase in cumulative expected man-days, decrease remaining

man-days (Control). A decrease in man-days remaining call for need to boost the workforce through the

workforce level required (Planning) with a call for an increased hiring. (Williams D., 2003a & 2003b),

(D., Bator 2014), (Pruyt E., 2013), & (Putnam-Majarian, T. & Putman, D., 2015)

HRM Subsystem Reinforcing Loop (R1): The focus of this reinforcing loop is on the hiring capacity

and the maximum number of new hires. As projects kickoff, hired workers undergo induction and

training to gain experience. The experienced staff undertakes the new staff training and induction duties.

As training proceed, new staff gain experience, and assimilated to the project until maximum limits hit.

An increase in experienced staff lead to increase in maximum staff, ceiling number of new hires, and the

maximum total number of sustainable workforce. This eventually results to an increase to the number of

sort workforce by management to finish the project on time. As a result, management decides to hire

more staff (Hiring). The loop ends at that point. (Williams, D., 2003a & 2003b), (S.C., Davar & M.

Parti, 2013) and (Zawedde, A., 2016)

 HRM Subsystem Reinforcing Loop (R2): The second reinforcing loops relate to staff hiring and the

schedule considerations. From explanations of the earlier loop (R1), as hiring is undertaken, the amount

of the number of man-days remaining decrease with increase in the workforce. This is a controlling

function. The increase has an effect to the schedule completion date (Planning) and the project

remaining time. Based on the amount of time remaining for the project and the workforce level required

(Planning) to complete the project is calculated and determined as indicated in the simulation graph

above. Management has to seek for workforce (Sort Workforce) through hiring (Adjustment of the

hiring policy). (Svahnberg, M.T., Gorschek, R. Torkar S., Saleem, B. & Shafique, M.U., 2010),

(Zawedde A., et al, 2011), (Gloria, P., 2014) & (Zawedde A. & Williams, D., 2013)

5.3 Field Discussion Groups Research Findings

5.3.1 Validity and Reliability Statistics

For validity tests IBM SPSS version 20 was used to establish how well the research instrument

(Questionnaire) used measured to the intended concept, reliability tests was conducted to evaluate the

consistencies and stability of the research instrument. (Pranjali, K. & Dhananjay, S. , 2014)

84

Cronbach’s alpha (Cronbach, 1951) is a measure of reliability i.e. lower bound for true reliability of the

survey defined as the proportion of variability in the responses to the survey that is the result of

differences in the respondents. This mean that answers to a reliability survey differ because respondents

have different opinions not because the survey id confusing or contains multiple interpretations.

Comparison base on the number of items on the survey and the ration of average inter-item covariance

to the average item variance.

Table 5.1 Case Processing Summary

 N %

Cases

Valid 64 55.2

Excluded 52 44.8

Total 116 100.0

Table 5.1 indicated statistical analysis of case processing weighted by the variable Years Worked.

Table 5.2 Field Study Item Summary Statistics

Table 5.3 Scale Statistics

Mean Variance Std. Deviation N of Items

95.55 127.585 11.295 100

The tables 5.2 & 5.3 give a field study item summary statistics.

Table 5.4: Validity and Reliability Statistics

Cronbach's Alpha Content validity index No. of Items

.783 0.762 100

Reliability and validity results in table 5.4 Show that the field study questionnaire was both reliable and

valid since both variables scored a Cronbach Alpha Coefficient and Content Validity index greater than

0.7 (Krishnaveni, R. & Deepa Ranganath , 2011) and (Williams, D. , 2003b)

85

Figure 5.1 Number of Errors as a Major Cause of Software Failure

Figure 5.1 revealed findings that existing number or error are agreed as biggest challenge (54.05%)

faced by the respondents, followed by 32.43% who strongly agreed, Only a small percentage of 9% ,

(5.4% - Strongly Disagreed plus 3.6% - Agree). A 4.5% was uncertain whether errors are the real cause

of software and REPI failures. (Mohapatra, S. & Gupta, K., 2011), (Lech, P. ,2013), (Michael, M.J. &

Shipman, F., M., 2000) and (Hastie, S., 2015)

Figure 5.2: Effects of Staff Productivity on REPI and Software Product Quality

Indicated in the figure 5.2, 45% of the respondents agreed and 8% strongly believed that, staff

productivity affects final software product and the REPI process while less than 30% felt that

productivity was not the root cause for software failures (Mohapatra, S. & Gupta, K., (2011). However

though slightly above 10% were not sure whether staff productivity affected software product no of the

respondents (0%) strongly agreed with the hypothesis. (Krisshnaveni, R. & Deeper Ranganath, 2011)

and (Hastie, S., 2015)

86

Figure 5.3: Poor Error-Rwork Cause Software Failures

Indicated in figure 5.3, most respondents agreed (70%) and strongly agreed (18%) that indeed poor error

rework contribute to “software crisis” (Mohapatra, S. & Gupta, K., (2011) & (Kartik Rai, Lokesh

Madan & Kislay Anand, 2014). However, 8% and 7% respectively felt they disagreed and strongly

disagreed with the preposition that poor error rework were the root cause for failed software. (Kamuni,

S. K., 2015), (Hastie, S., 2015) & (Putman-Majarian, T. & Putman, D., 2015)

 Figure 5.4 Effects of Poor Communication and Schedule Presure on Software Product

From the figure above , results indicates that poor communication between stakeholders and schedule

pressure affects the REPI aprocess and software product delivery (Putman-Majarian, T. & Putman, D.,

(2015). However results indicate that stakeholders in big numbers do not understand or are not certain of

the main cause of software crisis . This study therefore stands as an eye openner to stakeholders of the

causeof software failuress. (Gloria, P. et al, 2014), (Hastie, S. 2015), (Annet, Reily, 2017) and (Yaniv

Mordecai & Dov Dori, 2017)

5.4 Conclusion

The model was developed in consultation with stakeholders who included requirements engineers,

process improvement experts (team leads), quality requirements managers, project managers and

customers. Stakeholders presented with tabular and graphical model outputs, checked correctness and

87

insight generated by the model results. Model simulation results confirmed that a several factors from

any of the six systems/Sectors listed below contributes to poor software quality (Zawedde, A., &

Williams, D., 2013 & 2014), (Williams, D. 2003a, and 2003b), (Zawedde, A., 2016) and (Tricentis,

2018) namely:

a) Planning system

b) Human resource management

c) Software development

d) Software Production

e) Quality control

f) Testing

g) Controlling

Results from the discussion groups and simulations has indications that software crisis still exists and the

causes highlighted in early research studies remain the same hence need to undertake and integrated

approach to resolve RE, REPI and software development processes problems. A holistic dynamic model

approach remain the hope to arrest software crisis. (Zawedde, A. 2016), (Yaniv Mordecai & Dov Dori,

2017)

5.5 Models Sub-Sectors and Associated Formulas and Calculations

The Unified Software Requirements Engineering Process Management (USREPM) model is a system

made of sectors and sub-sectors demonstrated in chapter 4. The sectors are generated relationships as

shown in the Sub-system/sub-sectors equations. (Williams, D., 2003a, 2003b), (Danian, D. & Chisan, J.,

2006) and (Zawedde, A., 2016)

Controlling Sub-System/Sub-Sector

Cumulative__Tested_Tasks = +DT*Software__Developed

Mandays_Increase_Due__To_New_Discovered_Tasks =

+DT*New_Discovered_Tasks*+DT*Perceived__Productivity

Mandays_Required_To_Work_On_New_Tasks =

+DT*New_Tasks_Thought_Still_Remaining/+DT*Perceived__Productivity

ManDays_Still_Required_For_Testing = SUM (+DT*Tasks_Remaining__To_BeTested)

New_Discovered_Tasks = +DT*Percentage_Of__Actual_Work_Done-

+DT*Perceived_Percentage_of_Work_Done

New_Tasks_Thought_Still_Remaining = +DT*Cumulative__Developed_Tasks-

+DT*New_Discovered_Tasks

Perceived_Percentage_of_Work_Done = 100 %-(+DT*Cumulative__Developed_Tasks)

Perceived__Productivity = +DT*Cumulative__Developed_Tasks

Tasks_Remaining__To_BeTested = +dt*(Funished_Testing-+dt*Cumulative__Tested_Tasks)

88

Total_Job_Size___In_Mandays = +DT*Mandays_Increase_Due__To_New_Discovered_Tasks

Man-Power Allocation System/Sub-Sector

Daily_ManPower__Allocated_For_QA =

+DT*Total_Manpower__Still_Needed++DT*Schedule__Pressure*+DT*Manpower_Required_To_ReW

ork_On_Detected_Errors

DailyManPower_For_Dev_&_Testing = if 100 --DT*DailyManPower_For__Rework+-

DT*Daily_ManPower_For_Production then 1 else -DT*Daily_ManPower_For_Production--

DT*DailyManPower_For__Rework or DailyManPower_For__Rework--

DT*Daily_ManPower_For_Production

DailyManPower_For__Rework = +DT*Daily_ManPower_For_Production-

+DT*Daily_ManPower__Allocated_For_QA*+DT*Manpower_Required_To_ReWork_On_Detected_Er

rors/Detected__Errors_ReworkingRate

Daily_ManPower_For_Production = 100 %-(

+DT*Communication_&_Training_Overhead++DT*Daily_ManPower__Allocated_For_QA)

ManPower_Allocated_To_Software_Dev = +DT*DailyManPower_For_Dev_&_Testing-

+DT*SystemTesting*+DT*Schedule__Pressure

Project Human Resource Management Sub-System/Sub-Sector

Newly_Hired_Workforce (t) = Newly_Hired_Workforce (t - dt) + (HiringRate) * dtINIT

Newly_Hired_Workforce = +dt*HiringRate*+dt*Hiring__Delay

Inflows:

HiringRate = DELAY (1, +DT*Hiring__Delay, 1)

NewStaffAssimilationRate = +DT*Newly_Hired_Workforce*+DT*AveAssimilationDelay

Remaining__Mandays = (DT*Total_Job_Size___In_Mandays-+DT*Cumulative_Expected__Mandays)-

+DT*ManDays_Still_Required_For_Testing

ScheduledEndDate = +DT*Target__Completion__Date--

DT*Remaining__Mandays*+DT*Schedule__Pressure

Total__WorkForceNumber = +DT*Expected__WorkForce+ (+DT*ExperiencedWorkforce+

(+DT*Newly_Hired_Workforce))

AveAssimilationDelay = DELAY (1, 1, 0)

Cumulative_Expected__Mandays = SUM (+DT*Total__WorkForceNumber)

Expected__WorkForce = ENDVAL (Newly_Hired_Workforce, 0)

ExperiencedTransferRate = (+DT*NewStaffAssimilationRate)

ExperiencedWorkforce = +DT*Expected__WorkForce-

(+DT*Newly_Hired_Workforce*+DT*ExperiencedTransferRate)

FractionofExperiencedWorkForce = +DT*Total__WorkForceNumber-

+DT*Newly_Hired_Workforce/+DT*ExperiencedWorkforce

Hiring__Delay = TREND (1, 1)

MaxNewHire = FORCST (+DT*Expected__WorkForce, 1, 1, 0)

89

Max_Total_Sustainable__WorkForce = MAX (+DT*ExperiencedWorkforce++dt*MaxNewHire)

RemainingTime = -DT*STOPTIME-+DT*ScheduledEndDate

Sort_WorkForce = (+DT*Remaining__Mandays*+DT*Hiring__Delay)-

(+DT*HiringRate*+DT*WorkForce_Level_Required)

WorkForce_Level_Required = +DT*Max_Total_Sustainable__WorkForce-

+DT*Mandays_Required_To_Work_On_New_Tasks-+DT*Remaining__Mandays*-DT*RemainingTime

Software Project Management Sub-System/Sub-Sector

ErrorsDetectedForRework (t) = ErrorsDetectedForRework (t - dt) + (Error_Rate - ErrorRework) * dtINIT

ErrorsDetectedForRework = +DT*Active__Error_Density-

+dt*Detected_Errors_For_Reworking*+dt*Perceived__Productivity

Inflows:

Error_Rate = +DT*ErrorsDetectedForRework*+DT*+DT*Schedule__Pressure/+DT*Productivity

Outflows:

ErrorRework = +DT*(ErrorsDetectedForRework/+DT*Rework_Manpower_For_Average_Error)

People_&_Other__Resources (t) = People_&_Other__Resources (t - dt) + (Resource__Allocation -

Communication_&_Training_Overhead) * dtINIT People_&_Other__Resources =

Total_Job_Size___In_Mandays

Inflows:

Resource__Allocation = +DT*TurnOver*+DT*Target__Completion__Date

Outflows:

Communication_&_Training_Overhead = 2*+dt*(People_&_Other__Resources)

Schedule__Pressure (t) = Schedule__Pressure (t - dt) + (- TurnOver - Error_Rate) * dtINIT

Schedule__Pressure = if +dt*STOPTIME>+dt*Target__Completion__Date then 1 else IF

+dt*STOPTIME= +dt*Target__Completion__Date THEN 0 else 1

Outflows:

TurnOver = +DT*Schedule__Pressure

Error_Rate = +DT*ErrorsDetectedForRework*+DT*+DT*Schedule__Pressure/+DT*Productivity

Productivity = +DT*People_&_Other__Resources-

+DT*FractionofExperiencedWorkForce*+DT*Remaining__Mandays-

+DT*Communication_&_Training_Overhead-+DT*ErrorRework*-DT*+DT*Schedule__Pressure

ExperiencedStaffQuitRate = 2*+DT*TurnOver* (+dt*Schedule__Pressure-

+dt*Project_Progress__&__Status__Report)

Project_Progress__&__Status__Report = (+DT*Software__Developed)*+DT*ReportingDelay

ReportingDelay = +DT*DELAY (1, 2, 1)

ScheduleAdjustment = If (-DT*stoptime >+DT*Target__Completion__Date) then 1 ELSE

+DT*Detected_Errors_For_Reworking=0

90

Target__Completion__Date = ENDVAL (Project_Progress__&__Status__Report,

+DT*Project_Progress__&__Status__Report)

Software Development Productivity Sector

Actual_Manday_Franction_On_Project (t) = Actual_Manday_Franction_On_Project(t - dt) +

(Needed_Boost_For__Software_Development - WorkForce__Efficiency) * dtINIT

Actual_Manday_Franction_On_Project = dt*Total__WorkForceNumber/+dt*(ManpowerAllocation)

Inflows:

Needed_Boost_For__Software_Development = +DT*MandayAbsorbed

Outflows:

WorkForce__Efficiency =

+DT*ManPower_Allocated_To_Software_Dev*+DT*RateOfIncreaseinExhaustionLevel*+DT*Schedule

__Pressure

MandayAbsorbed = +DT*Max_Workable__Manday_Shortage

[1]/+DT*Perceived_WorkForce_Manday_Shortage

Max_Workable__Manday_Shortage[Exhaustion_&_willing_to_work] =

+dt*WorkForceOvertime_Threshold [Exhaustion_&_willing_to_work]

Perceived_WorkForce_Manday_Shortage = +DT*Schedule__Pressure/-

dt*TotalWorkForce__Perceived_Still_Needed

RateOfIncreaseinExhaustionLevel = +DT*Schedule__Pressure

Software_Dev_WorkForce_Productivity = +DT*WorkForce__Efficiency*-DT*Schedule__Pressure

Staff_Exhaustion_Level[Exhaustion_&_willing_to_work] = +dt*RateOfIncreaseinExhaustionLevel

TotalWorkForce__Perceived_Still_Needed = -DT*Software__Developed-

+DT*ManDays_Still_Required_For_Testing

Willingness_To_Work_Overtime [Exhaustion_&_willing_to_work] =

+DT*Max_Workable__Manday_Shortage

[1]*(+DT*RateOfIncreaseinExhaustionLevel*+DT*Staff_Exhaustion_Level [1])

WorkForceOvertime_Threshold[Exhaustion_&_willing_to_work] =

+dt*Staff_Exhaustion_Level[Exhaustion_&_willing_to_work]

Software Quality Assurance and Rework Sub-System/Sector

Rework_ManPower_Needed_Per_Average_Error (t) = Rework_ManPower_Needed_Per_Average_Error

(t - dt) + (Percentage_Of__Actual_Work_Done - DetectedErrors_Rework__Rate) * dtINIT

Rework_ManPower_Needed_Per_Average_Error = +dt*Active__Error_Density/+dt*ErrorRework

Inflows:

Percentage_Of__Actual_Work_Done = 100 %-(+DT*Cumulative__Developed_Tasks-

+DT*Software__Developed)

Outflows:

DetectedErrors_Rework__Rate = 1

91

Software__Developed (t) = Software__Developed (t - dt) + (ManpowerAllocation - QA_&__Rework -

Percentage_Of__Actual_Work_Done) * dtINIT Software__Developed =

+dt*Detected_Errors_For_Reworking

Inflows:

ManpowerAllocation =

+DT*QA_&__Rework++DT*ManPower_Allocated_To_Software_Dev++DT*+DT*SystemTesting

Outflows:

QA_&__Rework = +DT*Software__Developed

Percentage_Of__Actual_Work_Done = 100 %-(+DT*Cumulative__Developed_Tasks-

+DT*Software__Developed)

Detected__Errors_ReworkingRate = +DT*Percentage_Of__Actual_Work_Done-

+DT*Potentially__Detectable__Errors/+DT*QA__Manpower_Needed_For_AveverageError_Detection

Manpower_Required_To_ReWork_On_Detected_Errors =

+DT*Detected_Errors_For_Reworking/+DT*Total_Manpower__Still_Needed

Cumulative__Developed_Tasks = SUM (+DT*Software__Developed)

Detected_Errors_For_Reworking = IF +DT*STOPTIME > +DT*STARTTIME THEN 1 ELSE 0

Error__Generation = +DT*Software__Developed-

+DT*Percentage_Of__Actual_Work_Done*+DT*Daily_ManPower_For_Production*+DT*QA__Manpo

wer_Needed_For_AveverageError_Detection/+DT*Schedule__Pressure

Potentially__Detectable__Errors = +dt*Software__Developed-

(+dt*Daily_ManPower__Allocated_For_QA*+dt*ErrorRework*+dt*Manpower_Required_To_ReWork_

On_Detected_Errors)*(+dt*QA__Manpower_Needed_For_AveverageError_Detection*+dt*Error__Gene

ration)/+dt*Schedule__Pressure

QA__Manpower_Needed_For_AveverageError_Detection = +DT*MIN

(+DT*Percentage_Of__Actual_Work_Done)

Rework_Manpower_For_Average_Error = +DT*Percentage_Of__Actual_Work_Done

SystemTesting = 100%- (+DT*QA_&__Rework)

Total_Manpower__Still_Needed = REWORK (+DT*Percentage_Of__Actual_Work_Done)

System Testing- Sub-Sector

Active__Error_Density(t) = Active__Error_Density(t - dt) +

(Undetected__Active_Errors__From_QA_and_Rework) * dtINIT Active__Error_Density =

+dt*STOPTIME-STARTTIME *+dt*SystemTesting

Inflows:

Undetected__Active_Errors__From_QA_and_Rework = +DT*Active__Error_Density-

+DT*Detection_of__Active_Errors*+DT*+DT*Active_Error__Generation_Rate

Passive__Error_Density(t) = Passive__Error_Density(t - dt) +

(Undetected__Passive_Errors__From_QA_and_Rework) * dtINIT Passive__Error_Density =

+dt*SystemTesting-+dt*Active__Error_Density++dt*ErrorsDetectedForRework

92

Inflows:

Undetected__Passive_Errors__From_QA_and_Rework = +DT*Detection_of__Passive_Errors+DT*-

DT*Undetected__Active_Errors__From_QA_and_Rework++DT*Passive__Error_Density

Active_Error__Generation_Rate = +DT*Active__Error_Density/+dt* Passive__Error_Density

Detection_of__Active_Errors = +DT*Active__Error_Density/+DT*SystemTesting

Detection_of__Passive_Errors = +DT*Passive__Error_Density/+DT*SystemTesting

Testing__WorkForce__Per_Task = +DT*SystemTesting-

+DT*Active__Error_Density+DT*Passive__Error_Density

All Errors =

+dt*Active__Error_Density++dt*Passive__Error_Density++dt*Detected__Errors_ReworkingRate*+dt+

Undetected__Active_Errors__From_QA_and_Rework++dt*Potentially__Detectable__Errors*+dt*Undet

ected__Passive_Errors__From_QA_and_Rework

Funished_Testing = if (+DT*System Testing) = (All_Errors-

(+DT*Undetected__Passive_Errors__From_QA_and_Rework-

+DT*Undetected__Active_Errors__From_QA_and_Rework)) = 0 Then +DT*System Testing =

+DT*Software__Developed else 1

93

CHAPTER SIX: CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

6 Introduction

The Chapter concludes the research strategy; summarizes the REPI research study with proposed policy

improvements and recommendations. The section summarize the problem statement, literature review,

field study and discussion groups, research data analysis, research design and model construction and

simulation (Pruyt, E. 2010, 2013) and models simulation validations in relation to the problem statement

and literature review.

The chapter form a discussion of the existing policy analysis and new policy formulation (Michael

Mutingi, et al., 2017). The chapter finally offer recommendations areas, outlined as the focal point for

future research.

The study dedicates to the answer and legacy questions of software quality and the application of SD to

resolve SDLC problems. (IEEE, (2017) & (Pruyt, E. (2013). The study enhances our understanding of the

RE, REPI dynamic nature and software development when holistically seen as an integrated system. The

researcher develops an integrative SD model of software development, its structure, behavior and use it to

study and demonstrate the dynamic implications of REPI process management.

The research however left out the exhaustive model behavior validation in real life environment due to

time and resources constraints and the failure to find an ongoing project at the time to further the research.

Model validation according to (Pranjali, K. & Dhananjay, S., 2014) remains the future research question

and area of study. The model describe the dynamic behavior generated by the REPI, software

development process interactions and project management including project the scope, requirements

engineering, and staffing management, communication, cost and schedule. (Williams, D. 2003a, 2003b),

(Jones, C. & Bonsignour, O., 2012) and (Zawedde, A, 2016)

The research contribute to the development of a new research tool that aid to understand and examine the

impact of RE the development and REPI practices. (Pruyt, E., 2013) The model help investigate the key

RE, REPI and software development processes: human resource management, change management,

communication, planning, control and system testing), project monitoring and other practices necessary

for successful REPI in software development. (Zawedde, A. & Williams, D. 2013, 2014), (Zawedde, et al.

2011), (Zawedde, A., 2016) and (Sterman, J. D., Oliva, R., Linderman, K., & Bendoly, E., 2015)

94

This study widely contributes to literature on RE improvement and software development, in reference to

research work. The study establishes that RE, REPI and software development processes are dynamic

than static practices that exists in isolation. The model in its SD thinking provides multiple building

blocks to be used and applied in future research (Williams D., 2003a, 2003b), (Mwangi, H., Williams, D.

Timothy, W. and Zipporah, N., 2015) & (Zawedde, A. , 2016). The results of from this study could offers

significant interest to information systems organizations and clients, and stakeholders in software

development. The study provides all stakeholders with a simulation environment to examine the impacts

of their participation, practices and policies in software projects. (Michael Mutingi, et al., 2017).

The study exhibits important feedback structures in software development. The models simulation

behavior demonstrates key feedback structures that determine key behaviors in software development.

Intertwined interaction, between elements in software development, identified are, and clearly

demonstrated in the model. The model therefore, considered could be a theory of RE, REPI and software

development that can guide future research in areas of software development projects The model be if

used by organizations could be used to study as well as carry out a holistic analysis on their design,

specific practices and management policies on software projects. (Dahistedt, A. G., Natt, O. D., Ragnell,

B. & Persson, A., 2007) and (Michael Mutingi, et al. (2017).

The model runs simulations demonstrates that management decisive changes do influence on the costs of

reworking errors to the system (Hekimoglu, M. & Barlas, Y., 2010) and (Sterman, J.D., Oliva R.,

Linderman, K. & Bendoly, E. ,2015). The costs change sporadically and tend to upsurge over time

(Putnam-Majarian, T. and Putman D., 2015). Observed behavior patter rearranging behavior as critical to

success in software projects. The system behavior displays a pattern where projects with fixed resources

budgets (Morrison, B.J., 2012), schedule and delays, re-factoring lead to higher project costs, poor

production and staff motivation. Management decisions impacts on productivity, error rework, resource

adjustments and unit testing. Uncoordinated resources allocation and policies decisions have negative

impact on software projects. (Williams, D. 2003a, 2003b), (Glinz, M. & Fricker, S., 2013), (Jones, C. &

Bonsignour, O., 2012) & (Zawedde, A, 2016)

6.1 Achievements of the Research Study

The model can be used by practitioners improve their software development practices because it

facilitates the understanding of software project dynamics. The model can be used investigate impacts of

95

specific practices such as the cross team communications, software quality assurance and involvement of

developers. According to Morrison, B. J., (2012), the research applied SD modeling to understand project

progress when resources are limited staff poorly trained, and project planning, coordination, controlling and

monitoring fail. In the process of model development, various limitations encountered during the research. One

major limitation was unreliable data. (Hall, T. Beecham, S. & Rainer, A., 2002)

The model can have used as a guide to build, design and analyze software project management policies.

The model can be used, examine the sensitivity of software projects to varied endogenous and exogenous

factors such as team size, length and levels of interaction as well as requirements volatility. In summary,

the study provides researchers a tool to study software projects, assist practitioners make tangible

decisions and formulate appropriate software project and REPI process. (Yaniv Mordecai & Dov Dori,

2017)

6.2 Limitations of the Research Study

a) One of the key limitations of the model development was failure to accurately to predict when the staff

were fatigued, individual developers capacities and levels of staff on job experience because there

were no reliable data.

b) Varied data from multiple sources such as project managers, developers, quality control team and the

testing team.

c) Some data existed using graphical relationships.

d) Limited resources/ research budget for effective data collection from a larger population.

e) Limited modeling tools: the only readily available modeling and simulation tools were limited to

Vensim and Stellar that have their specific limitations. Obtaining licenses for globally available tools

was not possible with the research budget available. Despite the listed limitations, the model analysis

provides base guidelines for understanding and eliciting knowledge about REPI and software

development problems.

6.3 Future Research

Software project failure is an old and widespread deadlock that hamper software projects year after year.

The REPI model is my great contribution to improve software quality and in a nutshell the software

development process. The model represents qualitative and quantitative data based from research carried

out as highlighted in literature review and focused on the dynamics of the RE and REPI processes.

96

(Liuguo, S. Shijing Z. Jianbai, H, 2012), (Daneva, M., 2016), (Kamuni, S.K, 2015), (Lech, P., 2013),

(Putman-Majarian, T., & Putman, D., 2015) and (Michael Mutingi, et al., 2017)

The model extended can be in scope and incorporate other factors such as tools used in capture user

requirements, system development as well as consider firm sizes. The model, based on original Abdel-

Hamid’s model (Abdel-Hamid, T.K, 1991). Though not supported by standardized empirical and

technical tests, there are opportunities for future research further improving my model. Future research

work for could focus on the various types of testing that are undertaken during software development e.g.

design and code testing as well as varied efforts required for each test type.

Future research must explore a broad ranges, boundaries, functions to achieve different model

formulations and explore better ways to deal with the REPI and “software crisis” using a holistic dynamic

approach, better analysis methods, data mining techniques, control techniques, current and formal

modelling methods that would take a more multi-dimensional visualization.

However, the entire system constructed was to cover various sub systems/sectors behavior in totality.

Future research could detail the analysis for each sub-system and sub-sector to unearth more policy

hiccups and resolve the RE, REPI and Software gaps. (Putnam-Majarian, T. & D. Putman, 2015)

This research study did not consider critical factors that affect development such as: the domain,

environment, software project size, industry size as well as the geographical locations. Future research

should consider these factors. (Bjorner, D., 2006).

To obtain better software quality, research detailed ways to improve the current and future REPI, software

development and project management. From the onset of software project, quality checks must be apply.

The research recommends the adoption of the PCI Trilogy (Plan- Control and Improve) to project

approach in resolve current existing RE problems. (Joseph Juran, & A., Blanton Godfrey, 2009)

However, this research scope did not cover the software implementation stage of software project. Future

improved models should include sectors that simulate software implementation as part of improved

structure. Conceptual diagram show key processes, the flow of information within causal loop and

provides a broad and integrated view of the system by stakeholders when applied to the project related

policies. The application of causal loop diagrams provides a broad view to understand the system with

different that requires to be developed and improve the REPI management.

97

For successful software projects, all the core the sectors; human resource allocation, production, project

management, quality assurance and rework control, planning, controlling and testing should be expanded

and capture other factors that affect software quality in the dynamic world. (Lech, P., 2013), (Kamuni,

S.K., 2015)

In future REPI and software projects, must embrace Dr. Juran’s Trilogy of RE Quality Wave (Quality,

Quality Control, Quality Assurance, Quality Management, Quality Management System and Total

Quality Management). (Joseph Juran, 2009), (Cuellar, M., 2011) and (Sterman, J.D., Olivia, R.,

Lindeman, K, & Bendoly, E., 2015)

6.4 Advantages of Using the USREPM Model

The advantage of using the model as a tool of software project management is that system dynamics have

widely been applied in the software projects planning in the developed world. SD as a methodology based

on system feedbacks remains as an effective approach that holds the future to understand complex

systems other than software development systems focused in the thesis (Williams, D. and Kennedy, M. ,

2000), (Ferraira, et al., 2009) and (Mwangi, H. et al., 2017).

SD methodology and the model if well applied be used can to study complex software systems and assist

elucidate knowledge on factors that greatly and contentiously affects software development projects.

(J. Starman, 2000), (Sterman, C. D., 2003), (Zawedde, A.S.A., et al., (2011, 2013, and 2014) & (Pruyt, E.,

2010, 2013), (Firesmith, D. 2003, 2007), (Williams, D. 2003a, 2003b), (Berand, 2010), (Mijwaat, R.,

2012) and (Zawedde, A., 2016)

98

References:

1. Abdel-Hamid, T. K., (1991). Software Project Dynamics; An integrated Approach, Prentice-Hall, Upper

Saddle River, USA.

2. (Annet Reilly, (2017). New or Improved, Software Engineering Standards for Quality, ISO/IEC 25022

(2016), American Society for Quality. IEEE Computer Society

3. Barbara Gladysz, et al., (2015). Factors Influencing Keeping with Project Budget in IT projects, Zeszwty

Maulebone, Uniwersytetu Scczecinskiego nr 855 France Rynki Finansome, Ubezpiecsenia” nr 74, t1

Wydawnictwo Naukowe Universytetu, Szczecon S. 511-529. www.wne12.ph/Frfu

4. Barlas, Y., 1996: Formal Aspects of Model Validity and Validation in Systems Dynamics, Systems

Dynamics Review, 12 (3): pp.183-210.

5. Berry, D. M., Czarneeki, K., Antkiewiez, M., & Abdelrazik, M., (2010). Requirements Determination is

Unstoppable Conference. IEEE Requirements Engineering (p. pp 311). IEEE Computer Society.

6. Bjarnason, E., Wnuk, K., & Regnell, B., (2011). Requirements are slipping through the Gaps. Sweden:

Department of Computer Science.

7. Bjorner, D., (2006). Domains, Requirements, and Software Design. Berlin: Springer-verlag.

8. Cheng, B., & Atlee J., (2007). Research Direction in Requirements Engineering. Washington DC: Future

of Software Engineering.

9. Chung, L., Yu, E., Mylopoulos, J., & Nixon, B., (2000). Non-Functional Requirements in Software

Engineering. Boston: Kluwer Academic Publishers.

10. Cohene, T., & Easterbrook S., (2005). Contextual Analysis for Interview Design. Department of

Computer Science (pp. 95-104). Toronto Canada: IEEE Publications.

11. Cooper, et al., (2009). Requirements Engineering Visualization: A survey of the State-of-Art. In: Fourth

International Workshop on Requirements Engineering Visualization (rev’09)

12. Cuellar, M., (2011). Assessing project success: Moving beyond the triple constraint. International

Research Workshop on IT Project Management 2010, paper 13.

13. D. Bator, (2014). Why Employees turnover hurts customer satisfaction. URL:

Http://www.tembostatus.com/blog/how-employee-turnover-also-huts-customer-satisfaction

99

14. Dahistedt, A. G., Natt, O. D., Regnell, B., & Persson, A., (2007). Requirements Engineering Challenges

in Market Driven Software Development. An interview Study with Practitioners. Information and Soft

Technology 49, pp.588-604.

15. Damian, D., & Chisan, J., (2006). An Empirical Study of the Complex Relationship between

Requirements Engineering Process and Other Processes that Lead to Payoffs in Productivity, Quality and

Risk Management. IEEE Transactions on Software Engineering, 32 (7), 33-453.

16. Daneva, M., (2016). Requirements Engineering Foundation for Software Quality, 22nd International

Working Conference (p. 256). Gothenburg: Springer.

17. Dolores, R. W., & Roger, U. F., (1989). Software Verification and Validation on Overview. Journal in

IEEE software, 6 (3), 10-17.

18. Elbert, C., & Dumke R., (2012). Global Software and IT. New York: Springer.

19. Eveleens, L., & Verhoef, C., (2010). The Rise and fall of the Chaos Report Figures. IEEE software, 27

(1), 30-36.

20. Ferraira, et al., (2009). Understanding the effects of requirements volatility in software engineering by

using analytical modeling and software process simulation. Journal of Systems and Software 82(10)

1568-1577

21. Firesmith, D., (2007). Common Requirements problems, Their Negative Consequences and the Industry

Best Practices to Help Solve Them. Journal of Object Technology, 6 (1), 17-33.

22. Firesmith, D., (2003). Specifying Good Requirements. Journal of Object Technology, 2 (4), 77-87.

23. Friker, S., & Glinz, M., (2010). Comparison of Requirements Hand Off, Analysis and Negotiation, 18th

IEEE International Requirements Engineering Conference. Sydney.

24. Forester, J.W., (1968). Principles of Systems. Wright-Allen Press, Cambridge, MA.

25. Glinz, M., & Fricker, S. (2013). On shared Understanding in Software Engineering. Aachen, Germany:

Software Engineering 2012.

26. Gloria, P., et al., (2014). Software Requirements Development: A path of Improving Software Quality. In

Barafort B., O’Connor R.V. Poth A., Messnarcz R. (eds) Systems, Software and Service Process

Improvement. EuroSPI, 2014. Communications in Computer and Information Science, vol 425. Springer,

Berlin, Heidelberg.

100

27. Gorschek, T. & Davis, A. M., (2007). Requirements Engineering: In Search of the Dependent Variables.

Information and Software Technology, 50 (1), 67-75.

28. Gorschek, T., & Wohlin, C., (2006). Requirements Abstraction Model. Requirement Engineering, 11 (1),

79-101.

29. Gotteddiener, E., (2001). Collaborate For Quality: Using Collaborative Workshop to Determine

Requirements. Software Testing and Quality Engineering, 3 (2), 1-12.

30. Graham, I., (1991). Structured Prototyping for Requirements Specification in Expert Systems and

Conventional I.T Project. IEEE, 2 (2), 82-89.

31. Hall, T., Beecham, S., & Rainer, A., (2002). Requirements Problem in Twelve Companies An Empirical

Analysis. IEEE Proceedings Software, 149 (5), 153-160.

32. Hassenzahl, M. Beu, A. & Burmesster, M., (2001). Engineering Joy. IEEE Software, 18 (1), 70-76.

33. Hastie, S. (2015). Standish Group (2015). Chaos Report –Q&A with Jennifer Lynch. Retrieved

September 19 , 2018,from htttps://www.infoq.com/articles/standish-chaos-2015

34. Hekimoglu, M. Barlas, Y., (2010). Sensitivity Analysis of Systems Dynamics Models by Behavior

Pattern Measures. In: Proceedings of the 28th Systems Dynamics Conference (2010)

35. Hove, S.E., (2005). Experience from Conducting Semi-structured Interviews in Empirical Software

Engineering Research. Software Metrics. IEEE International Symposium, 1 (1), 19-22.

36. IEEE, (2011). ISO/IEC/IEEE International Standard- Systems and Software Engineering – Life Cycle

Processes- Requirements engineering. IEEE 29148-2011.

37. IEEE, (2013). Software and System engineering Software Testing part 2: Test Processes. ISO/IEC/IEEE

29119-2:2013 (E), p. 1-68.

38. IEEE, (2014). IEEE Standard for Software Quality Assurance Processes, IEEE Std 730-2014 (Revision of

IEEE std. 730-2002), p 1-138

39. IEEE, (2016). IEEE Draft Standard for System Software and Hardware Verification and Validation-

Corrigendum 1, 1012-2016/Cor 1-2017.

40. IEEE, (2016). ISO/IEC/IEEE International Standard for Systems and Software Engineering- Life Cycle

Management- Part 4: Systems Engineering Planning.

101

41. IEEE, (2017). ISO/IEC/IEEE International Standard – Systems and software Engineering – Software life

Cycles. IEEE 12207-2017.

42. IEEE, (2017). Systems and Software Engineering – Life Cycle- Management – Part-3: Guidelines for the

Application of ISO/IEC/IEEE/ 12207 (Software Life Cycle Processes), P24748-3-2017.

43. IEEE, (2017). ISO/IEC/IEEE International Standard –Systems and Software Engineering- Life Cycle

Management-Part 5: Software Development Planning. IEEE 24748-5-2017.

44. J. Starman, (2000): Business Dynamics: System Thinking and Modeling for a complex world. Irwin

Professional Publications, New York, USA.

45. Jalote, P., (1997). An Integrated approach to Software engineering. Springer.

46. Jones, C. & Bonsignour, O., (2012). The Economics of Software Quality, Addison Wesley, USA.

47. Joosten, D., Basten, D. & Mellis, W., (2011). Measurement of Information System Project Success in

Organizations -What researchers can learn from Practice’ ECIS 2011 Proceedings Paper 177.

48. Joseph Juran, A. & Blanton Godfrey, (2009). Juran’s Quality Handbook, McGraw-Hill International

Editions: industrial Engineering Series, fifth Edition.

49. Juristo, J., Moreno A. M., & Silva A., (2002). Is the European Industry Moving Towards Requirement

Engineering Problems? IEEE Software, 77-177.

50. K. Saced (1999). Defining a problem or constructing a reference mode. Technical report, Worcester

polytechnic Institute.

51. Kabaale, E. Mayoka, K. G. & Mbarika, I., (2014). Requirements Engineering Process Improvement

Challenges faced by Software SME’s in Uganda. In: International Journal Conference of Computer

Applications (0975-8887) Volume 88-No. 5 February 2014

52. Kamuni, S. K., (2015). Study of Factors that Induce Software Project Overrun Time, in Department of

Mechanical and Manufacturing Engineering. St. Cloud State University.

53. Kartik Rai, Lokesh Madan & Kislay Anand, (2014). Software Crisis, International Journal of Innovative

Research in Technology, Vol. 1 Issue 11.

54. Katonya, G., & Summerville, I., (1998). Requirements Engineering Process and Technique, UK: John

Wiley & Sons.

55. Kotonya, & Somerville, I., (2006). Software Engineering. (9. Edition, Ed.), USA: Pearson.

102

56. Kraut, R. E., & Streeter, L. (1995). Coordination in Software Development in. Communication of the

ACM, 38 (3), pp. 69-81.

57. Krishnaveni R. and Deepa Ranganath, (2011). Development and validation of an instrument for

measuring the emotional intelligence of individuals in the work environment – In the Indian Context. The

International journal of Educational and psychological assessment.

58. Langanath, M., & Duggan, J., (2012). A tool to Support Collaborative Software Requirements

Management. Requirements Engineering Journal, 6 (3), pp.161-172.

59. Lech, P. (2013). Time, Budget and Functionality? I.T Project Success Criteria Revised. Information

Systems Management, 30 (3), 263-275.

60. Liuguo, S. Shijing, Z. Jianbai, H., (2012) Pricing Simulation Platform Based on System Dynamics.

Systems Engineering Procedia 5: 445-453.

61. McLeod, Laurie, Stephene, G. & MacDonnell, (2011). Factors that Affect Software Development Project

Outcomes: A survey of research , ACM Computing Survey, Vol 43, No.4, Article 24

62. Michael Mutingi, et al., (2017). Systems Dynamic Approaches to Energy Policy Modelling and

Simulation, 4th International Conference on Power and Energy Systems, CPESE 2017, 25-29 September

2017, Berlin, Germany.

63. Michael, M. J. & Shipman, F. M., (2000). A Comparison of Questionnaire-Based and GUI-Based

Requirements Gathering. IEEE Publication, (pp. 35-43).

64. Mijwaart, R., (2012). A Requirement Engineering Process Model for Software Development and

Requirements Management, Foswiki Publishers, 1-13.

65. Mohapatra, S. and Gupta, K., (2011). Finding Factors Impacting Productivity in Software Development

Project Using Structured Equation Modeling. International Journal of Information Processing and

Management 2 (1) (January 2011) 90-100

66. Morrison, B.J., (2012). Process Improvement Dynamics under Constrained Resources: Managing the

Work Harder Versus Work Smarter Balance. System Dynamics Review, 28(4): 329-350, October-

December.

103

67. Mwangi. H., Williams D., Timothy W., and Zipporah N., (2015). “Using System Dynamic to understand

the role of cofactors Tb and malaria in the progression of HIV”, International Journal of System

Dynamics Applications, Vol. 16. 72-81, 2015. (P.3-33).

68. Nurmuliani, N., Zowghi, D., & Fowell, S., (2004). Analysis of Requirements Volatility during Software

Development Life Cycle. 2004 Australian Software Engineering Conference, (p. P.28). Washington.

69. Pandey, D., Suman, U., & Ramani, A. K., (2010). An Effective Requirement Engineering Process Model

for Software Development and Requirements Management. IEEE, 287-291.

70. Pandley, D., & Ramani, A. K., (2009). Social Organization Participation Difficulties in Requirement

Pngineering Process A study. National Conference on Emerging Trends in Software Engineering and

information Technology. Gwalior: Gwalior Engineering College.

71. Parviainen, P., Hulkko, H., Kaariainen, J., Takalo, J., & Tihinen, M., (2003). Requirements Engineering,

Inventory of Technology. VTT Publication.

72. Philip, A., Laplate, (2017). Requirements Engineering for Software and Systems. 3rd Edition, Auerbatch

Publications, New York. America.

73. Philip Morris International, (2015). Software Quality Assurance,

https://www.pmi.com/resources/docs/default-source/legal/software-quality-assurance.pdf

74. Pohl, K., & Rupp, C., (2011). Requirements Engineering Fundamentals: A study Guide for the Certified

Professional for Requirements Engineering Exam. Rocky Nook Computing.

75. Poloudi, A., (2004). Stakeholder Identification in Inter-Organizational Systems: Gaining Insight for Drug

Use Management Systems. European Journal of Information Systems, 6, 1-14.

76. Pranjali, K., & Dhananjay, S., (2014). The Role of Verification and Validation in system Development

Life cycle. International Journal of Research in Advent Technology, 2 (2), 1-3.

77. Pruyt, E., (2010). Using Small Models for Big Issues: Exploratory System Dynamics Modelling and

Analysis for Insightful Crisis Management, Proceedings of 18th International Conference of systems

Dynamics Society, 25-29 July 2010, Seoul, Korea.

78. Pruyt, E., (2013). Small systems Dynamic Model for big Issues: Triple Jump Towards real-world

Complexity, Delft Library, Netherlands

104

79. Putnam-Majarian, T. and Putman, D., (2015). The Most Common Reasons Why Software Projects Fail.

Facilitating the spread of knowledge and innovation in professional software development

80. S. C. Davar and M. Parti, (2013). Does training affect productivity of employees? Two methods of meta-

analysis. Indian Journal of Industrial relations, 48 (4), 2013

81. Sabaliauskaite, G., Loconsole, A., Engstrom, E., Underkalmsteiner, M., Regnell, B., Runeson, P., et al.

(2010). Challenges in Aligning Requirements Engineering and Verification in Large-Scale Industrial

Context. Foundation for Software Quality, 128-142.

82. Solomon, B., Shahibuddin, S., & Ghai, A., (2009). Redefining the Requirements Engineering Process

Improvement Model. Asia-Pacific Engineering Conference (pp. 87-89). Malaysia: Penang.

83. Sterman, C.D., (2003). Business Dynamics: Systems Thinking and Modeling for a Complex World,

Irwin/McGraw-Hill. Chicago, USA.

84. Sterman, J. D., Oliva, R., Linderman, K., & Bendoly, E., (2015). System Dynamic Perspective and

Modelling opportunities for research in Operations Management. Journal of Operations Management, 39-

40 (November), 1-5.

85. Stevens, R., Brook, P., Jackson, K., & Arnold, S., (1998). Systems Engineering-Coping with Complexity.

London: Prentice Hall.

86. Svahnberg, M. T., Gorschek, R., Torkar, S., Saleem, B. & Shafique, M. U., (2010). A Systematic Review

on Strategic Release Planning Models, Information and Software Technology. Information and Software

Technology, 52 (3), pp. 237-248.

87. Tricentis: (Accessed 23-9-2018). Real life Examples of Software Development failures, Software Testing

101, https://tricentis.com

88. Tveito, A., & Hasvold, P., (2002). Requirements in the Medical Domain. Experience and Prescriptions,

pp. 66-69.

89. Van Oorchot, K. Langerak, F. and Ngupta, K.S., (2011). Escalation, De-escalation, or Reformation:

Effective Interventions in Delayed NPD Projects, Journal of Product Innovation Management 28: 848.

90. Woodbridge, S., (2003). Bayesian Belief Networks. Technical report, CSIRO Center for Complex

Systems Science.

105

91. Williams, D., 2003a). Integrating Systems Dynamics to Deliver Projects: faster, better and cheaper. In:

Proceedings of 21st International Conference of the Systems Dynamics Society.

92. Williams, D., (2003b). Integrating Systems Dynamics Modeling and Case Study Research method: A

Theoretical framework for process improvement. In Systems Dynamics Society.

93. Williams, D. & Kennedy, M., (2000) Towards a Model of Decision Making for Systems Requirements

Engineering Process Management. In: The 18th International Conference of The Systems Dynamics

Society, Bergen, Norway

94. Williams D.W., (2000). “Dynamic Synthesis: “A theoretical framework for research in requirements

engineering process management,” Operations Research Society, ISBN: 0903440202, 2000.

95. Wolstenholme, E. F., (2004). Using generic systems archetypes to support thinking and modelling,

Systems Dynamic Review 20 (4): 341-356

96. Yaniv Mordecai & Dov Dori, (2017). Model-based requirements engineering: Architecting for systems

with stakeholders in mind. , IEEE 2017, Viena, Austria.

97. Zawedde, A. (2016). Modelling the dynamics of requirements process improvement Eindhoven:

Technische Universiteit Eindhoven.

98. Zawedde, A., & Williams, D., (2013). Dynamics of Software Systems projects during the requirements

Process Improvement, In Press: International journal of Simulation and Process Modeling

99. Zawedde, A. & Williams, D., (2014). Dynamics of Software Systems Projects during the Requirements

Process Improvement. International journal of Simulation and Process Modelling, Vol. IX (4)pp.206-221

100. Zawedde, A. & Williams, D., (2013). Determinants of Requirements Process Improvement Success. In:

Proceedings of the 31st International Systems Dynamics Conference.

101. Zawedde, A.S.A., Klabbers M.D.M., Williams, D.D., van den Brand M.G.J.M., (2011). Understanding

the Dynamics of Requirements Process Improvement: A New Approach. In : Calvano D., Oivo M.

Baldassare M.T., Visaggio, G. (eds) Product-Focused Software Process Improvement, PROFES 2011,

Lecture notes in Computer Science, vol. 6759, Springer, Berlin, Heidelberg.

106

Appendix 1: Research Questionnaire

a) Please indicate your gender

Male { }

Female { }

b) Age category in years

20 – 30 years { }

31– 40 years { }

41 – 50 years { }

Above 51 years { }

c) Kindly state the highest level of education attained

Secondary { }

Certificate { }

Diploma { }

Degree { }

Post Degree { }

d) Please indicate the number of years you have worked in the IT department

Between 1-5 { }

6 – 10 { }

Above 10 { }

e) Kindly indicate the level held

i. Top management { }

 Middle Managerial { }

ii. Business systems manager { }

 Support Staff (user) { }

107

Challenges Facing Alignment of Requirement Engineering Process

C
od

e

Condition St
ro

ng
ly

D
isa

gr
ee

D

isa
gr

ee

U
nc

er
ta

in

A
gr

ee

St
ro

ng
ly

A
gr

ee

RE Software has been changed in the last 5 years

 There are weakness in the system that needed to be

changed

RE You were involved in system require engineering

rectifying existing software problems

RE Users were involved in the system building process

RE You were involved in the verification and validation, of

the systems?

RE There are significant changes needed

RE There was constant communication between Requirement

engineers and the stakeholders.

RE Were you involved in the decision process, during the

engineering of the new software?

Requirement Engineering Management Process

C
od

e

C
on

di
tio

n

St
ro

ng
ly

D

isa
gr

ee

 D

isa
gr

ee

U
nc

er
ta

in

A
gr

ee

St
ro

ng
ly

A

gr
ee

RE The software was delivered within the agreed time frame

RE The system meet the capacity needed

RE The software performs as expected

RE Requirements planned on at the beginning of the engineering

process were all included in the final software

RE Were user’s needs sufficiently meet?

RE The company got its value for money

108

Requirement Engineering Process

C
od

e Condition

St
ro

ng
ly

D
isa

gr
ee

D

isa
gr

ee

U
nc

er
ta

in

A
gr

ee

St
ro

ng
ly

A

gr
ee

RE Were you involved in the choice of software Requirements?

RE Were you involved in the analysis of software requirements?

RE There was a discussion between you, software requirement

engineer and the software developer

RE There were verification of all user needs in the system

RE You agreed changes and recommendations not system

109

Appendix 3: Research Budget

NO PARTICULARS COST

1 Typing and photocopying research proposal 10,000.00

2 Typing and photocopying of questioners 10,000.00

3 Pretest 10,000.00

4 Traveling and subsistence 30,000.00

5 Typing and photocopying the final project 30,000.00

6 Final project binding 10,000.00

 Total cost 100,000.00

110

Appendix 2: Implementation Schedule

Activity Description Precedence Duration

A Pretest questioners 2 days

B Receive feedback from the pretest A 2 days

C Upgrade the questioner from the feedback received A 2 day

D Administer the questioner to the respondents C 2 days

E Collect the questioners from the respondents D 4 days

F Data preparation E 2 days

G Data analysis using SPSS F 4 days

H Compiling the final project and presentation G 14 days

Total days 32 days

Total number of weeks 1month 3days

111

Appendix 4: Implementation Schedule

A

ct
iv

iti
es

A 2 Days

B 2 Days

C 2 Days

D 2 Days

E 4 Days

F 2 Days

G 4 Days

H 14 Days

0 2 4 6 8 10 12 13 15 18 20 24 26 28 30 32

